! " g $% $ $ %
& Ht # % $
"% %
(% ($ #% $ & ($3
$$ (# % $ ()
$ o0 $ % $ + # #" %
% % $ %S #H % % S L % $
$" %
$ $,(% ("% $
% $ $$ (% $
("%$ % $ $-
(% % $ (# $"
$3 % $ & $ L % $

% $% $"

% & $

() =+

*to

mailto:F.Arbab@cwi.nl
mailto:F.de.Boer@cwi.nl
mailto:M.Bonsengue@liacs.nl
mailto:Marc.Lankhorst@telin.nl
mailto:E.Proper@cs.ru.nl
mailto:L.W.N.van.der.Torre@cwi.nl

1 Introduction

In the development of information systems, software systems, and enterprise
architectures, many different architectural descriptions are used, usually in
the form of architectural models. However, whereas companies have long since
recognized the need for an integrated architectural approach, and have devel-
oped their own architecture practice, they still experience a lack of support in
the design and communication of architectures. For example, when designing
architectures, architects do not have a common, well-defined vocabulary to
avoid misunderstandings and promote clear designs, that allows for the inte-
gration of different types of architectures related to different domains, and that
is shared with various stakeholders within and outside the organization, e.g.,
management, system designers, or outsourcing partners. Other disciplines, for
example building and construction, mechanical engineering, or chemical en-
gineering, also use abstractions such as models to describe an object being
designed, but have a much more limited and standardized vocabulary and
therefore do not seem to face the problems encountered in information tech-
nology.

The important distinction between information technology architecture and,
for instance, building and construction is that the latter is concerned with
information about concrete physical things, whereas the former gives us infor-
mation about abstractions that need not have a physical counterpart. There-
fore, in information technology architecture, we do not have one abstract and
one concrete thing, but we have to deal with two abstract things: information
systems and models of these systems. One of the main difficulties in dealing
with these ‘abstractions of abstractions’ is that it is much harder for the var-
ious stakeholders involved in the design and use of an information system to
conceptualize this system than it is for, say, a contractor or inhabitant of a
house to think about its structure, functions, and other aspects. The abstract
nature of both the object being designed and the descriptions of this design
in the form of models leads to at least the following problems:

e Confusion exists with respect to the distinction among a model’s presenta-
tion, content, and semantics: what does the model look like, what elements
does it contain, and what are the relations of these elements to parts of
reality (i.e., of the information system)?

e To capture the diverse and abstract nature of information systems often re-
quires the use of multiple large, complex, and interrelated models providing
insight into the system from different viewpoints. Comprehending these in
their entirety may be a daunting task.

e In information technology the technological building blocks, their abilities
and their boundaries, are not as clear (and stable) as they are in the other
disciplines.

e The architectures are not just referring to technological phenomena, but
also refer to socio-economical phenomena such as business/work processes,
etc. This makes it much harder to come up with a limited set of architectural
descriptions, models and associated languages.

Due to these reasons, we need in enterprise architecture a more general and
flexible approach to the integration of architectural models. In this paper we
go beyond the kinds of model integration studied with a long tradition in
information systems, and elsewhere, by addressing the following two issues.

o We are not only interested in the static case where architectural models are
related to each other and should satisfy some coherence criteria, but we are
in particular interested in the dynamic case where models are updated, and
as a consequence other models are updated too.

e We are interested not only in syntactic approaches relating one formalism
to another one, but we also use the semantics of the models during the
integration.

To address these issues, is is essential not to confuse the various uses of “model”
in literature. The colloquial use of the term model in enterprise architecture
generally refers to a (graphical) symbolic model (viz. the IEEE standard as
presented in (IEEE (2000)), the use in UML, etc). When stakeholders refer
to architectural models and systems, they can do so only by interpreting the
symbols in the symbolic models. The interpretation of such a symbolic model
in terms of a formal language is referred to as as semantic model. A semantic
model does not have a symbolic relation to architecture, as it does not con-
tain symbolic references to reality. However, stating that the semantic model
associated to some given symbolic model captures the meaning of the latter
model, we ignore some important issues that are at play when dealing with
models in an architecting context. What is still missing is the (inherently sub-
jective) nature of human interpretation of these models. In some studies such
as Falkenberg et al. (1998), models are defined as purposely abstracted con-
ceptions (as held by a human viewer) of a domain; we call them subjective
models.

Note that our three kinds of models are not simple instances of the IEEE
standard 1471-2000 concept of model, since they have distinct relations to
other concepts. On the contrary, our notion of symbolic model is most closely
related to the notion of model in the IEEE standard, and the semantic and
subjective model can best be seen as new notions.

The work reported in this paper is the result of the ArchiMate project ! which

I The ArchiMate consortium consisted of ABN AMRO, Stichting Pensioenfonds
ABP, the Dutch Tax and Customs Administration, Ordina, Telematics Institute,
Centrum voor Wiskunde en Informatica, Radboud University Nijmegen, and the

aimed to provide concepts and techniques Jonkers et al. (2003, 2004) to sup-
port enterprise architects in the visualization, communication and analysis
of integrated architectures. An overview of the results of this project can be
found in Lankhorst and others (2005). In this paper we go beyond the results
reported there, in that we will more fundamentally explore the relationships
between the three classes of models and their respective roles in integrating
different architectural models.

The layout of this paper is as follows. We first discuss motivating examples of
model integration. Then we introduce and discuss the concepts of symbolic,
semantic and subjective model. Finally we demonstrate the usefullness of our
distinction by discussing some model integrations in the ArchiMate project.

2 Integration of Architectural Domains

In this section we discuss the motivating problem for the distinction among
symbolic, semantic and subjective models. We also discuss the relation to
complexity of architectures, and compositionality. As mentioned before, even
though companies have long since recognized the need for an integrated archi-
tectural approach and have indeed developed their own architecture practice,
they still suffer from a lack of support in the design, communication, realiza-
tion and management of architectures and related models. Several needs can
be categorized as follows with respect to different phases in the architecture
life cycle:

Design — When designing architectures, architects should use a common,
well-defined vocabulary to avoid misunderstandings and promote clear de-
signs. Such a vocabulary must not just focus on a single architecture domain,
but should allow for the integration of different types of architectural models
related to different domains.

Communication — Architectural models are shared with various stakehold-
ers within and outside the organization, e.g., management, system designers,
or outsourcing partners. To facilitate the communication about architec-
tures, it should be possible to precisely represent the relevant aspects for a
particular group of stakeholders.

Realization — To facilitate the realization of architectures and to provide
feedback from this realization to the original architectures, links should be
established with design activities on a more detailed level, e.g., business
process design, information modeling or software development.

Change — An architecture often covers a large part of an organization and
may be related to several architectural models. Therefore, changes to an

Leiden Institute of Advanced Computer Science.

architecture may have a profound impact. Assessing the consequences of
such changes beforehand, and carefully planning the evolution of architec-
tures are therefore very important. Until now, support for this is virtually
non-existent.

In current practice, enterprise architectures often comprise many heteroge-
neous models and other descriptions, with ill-defined or completely lacking
relations, inconsistencies, and a general lack of coherence and vision. The
main driver behind most of the needs identified above is the complexity of
architectures, their relations, and their use. Many different architectures or
architectural views co-exist within an organization. These architectures need
to be understood by different stakeholders, each at their own level. The con-
nections and dependencies that exist among these different views make life
even more difficult. Management and control of these connected architectures
is extremely complex. Primarily, we want to create insight for all those that
have to deal with architectures. There are many instances of this integration
problem, of which we discuss two examples below. In general, some integration
problems can be easily solved, for example by using an existing standard; oth-
ers are intrinsic to the architectural approach and cannot be “solved” in the
usual sense. These hard cases are intrinsic to the complexity of architecture,
and removing the problem would also remove the notion of architecture itself.
This is illustrated by Example 2.1 below.

Example 2.1

As a first example of an integration problem consider Figure 1, which con-
tains several architectural models. The five architectures models may be
expressed as models in UML, or models from cells of Zachman’s architec-
tural framework, or any kind of combination. For instance, there may be a
company that has modelled its applications in UML, and its business pro-
cesses in BPMN. In all these cases, it is unclear how concepts in one view
are related to concepts in another view. Moreover, it is unclear whether
views are compatible with each other.

The integration of the architectural models in Figure 1 is likely to be problem-
atic due to the fact that they have been developed by distinct stakeholders,
with their own concerns. One might even imagine multiple stakeholders who
have distinct models, for example of the process architecture. Relating archi-
tectures means relating the ideas of these stakeholders, of which most remain
implicit. A consequence is that we often cannot assume to have complete one-
to-one mappings, and the best we can ask for is that views are in some sense
consistent with each other. This is often called a problem of alignment.

In the complex integration cases that involve multiple stakeholders, it is clear
that integration is a bottom-up process, in the sense that first concepts and
languages of individual architectural domains are defined, and only then the

Fig. 1. Heterogeneous architectural domains

integration of the domains is addressed. We can summarize Example 2.1 by
observing that the integration of architectural models is hard due to the fact
that architectures are given and used in practice, and cannot be changed. It
is up to those who integrate these models to deal with the distinct nature of
architectural domains.

When looking at everyday architectural practice, it is clear that some inte-
gration problems occur more frequently than others. A typical pattern is that
some architectural models describe the structure of an architecture at some
point in time, whereas other models describe how the architecture changes
over time. The second example that we discuss in this paper addresses this
issue.

Example 2.2
As a second example of an integration problem, consider the first two
viewpoints discussed in the IEEE 1471-2000 standard (IEEE (2000)): the
structural viewpoint and the behavioral viewpoint. How are structure and
behavior related?

The second example touches on a problem that has been studied for a long
time, the integration of structural and behavioral models. One instance of this
problem is how structural concepts like software components are related to
behavioral concepts like application functions. Another area where this issue
has been studied is in formal methods and in simulation.

In these two examples, compositionality plays a central role in the architec-
tural approach to deal with the complexity of systems. For example, the IEEE
1471 standard defines architecture as the fundamental organization of a sys-
tem embodied in its components, their relationships to each other, and to
the environment (together with principles guiding its design and evolution).
Moreover, compositionality also plays a role when varying viewpoints on a
system are defined. The latter type of decompositions are usually functional,

in the sense that the functionality of an architecture is decomposed in the
functionality of its parts and their relations.

3 Symbolic, semantic and subjective models in enterprise archi-
tecture

To discuss the examples of integrating architectural models, we need a com-
mon terminology. Just like architectural diagrams are often misinterpreted
due to the fact that each stakeholders interprets the picture in its own way,
also architectural concepts are often misinterpreted. This has led to the IEEE
1471 standard which had the ambition to resolve these ambiguities. However,
despite the fact that there seems to be increasing consensus on the termi-
nology used, in practice one still finds many distinct definitions of relevant
architectural concepts, such as model, meta-model, and view. In this section
we therefore define and discuss our terminology.

3.1 Symbolic models

A symbolic model expresses properties of architectures of systems. It therefore
contains symbols that refer to reality, which explains the name of this type of
models. The role of symbols is crucial, as we do not talk about systems without
using symbols. The reason is that systems are parts of reality, and we cannot
directly talk about reality as we cannot know the system by itself. Symbolic
models are the formalization of one or more aspects of the architecture of a
concrete system.

A symbolic model is expressed using a description language, a representation
of the model that is often confused with its interpretation. For example the
expression 3+ 5 may be intended to mean a particular natural number, but in
this case it should just be regarded as notation as part of the syntactic model
of the natural numbers. Strictly speaking, a description language describes
both the syntactic structure of the model and its notation, i.e., the words or
symbols used for the concepts in the language. We make a strict separation
between structure and the notation, and we will use the term ‘model’ to refer
to the structure.

The core of every symbolic model is its signature. It categorises the entities of
the symbolic model according to some names that are related, linguistically
or by convention, to the things they represent. These names are called sorts.
Relations between entities of some sorts and operations on them are also
declared as relation symbols in the signature. After the relations have been

specified, they can be used in languages for constraining further or analyzing
the nature of the symbolic model. An example is in order here, before we go
any further. Figure 2 exhibits a structural description of the employees of a
company.

Director > Employee
responsible for

Fig. 2. Syntactic model of director-employee relationship

We need to recall that the above is a syntactic structure, that is, a description
of a symbolic model with a signature whose sorts are Employee and Director,
and with respective entities related by a relation named responsible_for. As
yet we have assigned no meaning to it, we have only categorized the entities
of the symbolic model into two categories and named a relation between the
entities belonging to two sorts. The syntactic names used for the sorts and
relations push our intuition some steps ahead: we know what an employee
is, what a director is and what responsible for means. However, while these
syntactic names help us in our understanding, they are also the main source
of confusion in the communication and analysis of an architecture. We could
have named the above sorts X and Y to better retain the meaningless quality
of the syntax, and avoid confusion with semantics.

A signature thus provides a conceptual glossary in whose terms everything else
in the symbolic model must be described, similar to the FEnglish dictionary for
the English languages. Additionally, a signature comprises information to cap-
ture certain aspects of the ontology of an architecture. For example it may
include hierarchical information between sorts in terms of a “is_a” relationship,
or containment information in terms of an “includes” relationship, or depen-
dency information in terms of a “requires” relationship. Signatures containing
this additional information are more general than a glossary. They provide a
conceptual schema, similar to the schema provided to biologist by the species
classification.

— b

Director Employee
y

>
responsible for

Fig. 3. Extended symbolic model

For example, Figure 3 extends the previous signature with an “is_a” relation-
ship between the sorts Director and Employee, intuitively suggesting that every
director is also an employee. Moreover, the symbolic model may also contain
a set of actions, and the signature a set of action symbols, the meaning of
which we discuss in the following section below.

