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chapter i

Introduction and results

The notions of Brownian motion and Gaussian processes play an important
role in probability theory. This thesis is a contribution to the understanding of
non-commutative Gaussian processes in the framework of quantum probability
theory.

Quantum mechanics describes the laws governing the microscopic world, and
represents one of the main inspiration sources for non-commutative probability
theory. It has been developed around 1925 independently by Heisenberg, who
created what was then called ‘matrix mechanics’, and by Schrödinger who named
his version ‘wave mechanics’. They realized that in order to explain the discrete
configuration of energy levels in atoms, the physical quantities must be governed
by non-commutative algebras. In 1932 von Neumann published his book Math-
ematische Grundlagen der Quantenmechanik [66] proving that the two versions
are equivalent. Motivated by quantum mechanics he defined the notion of ring of
operators nowadays called von Neumann algebra, and developed their theory in
a series of papers in collaboration with Murray. In the same time Gel’fand and
Neumark initiated the study of C∗-algebras, their work being continued by Se-
gal who gave the ‘GNS-construction’ relating states with representations. Since
then the theory of operator algebras has developed immensely, the philosophy of
encoding mathematical structures into C∗ or von Neumann algebras leading to
the program on non-commutative geometry pioneered by Connes [17].

In his book Local Quantum Physics [30], Haag offers a view of quantum rela-
tivistic physics in which all these mathematical structures find their place. The
theory of operator algebras is equally important in quantum statistical physics
[14, 15] as well as in the study of open quantum systems [19]. Here one de-
scribes the dissipative evolution of a small system as reduced hamiltonian flow
of the system coupled with a ‘bath’. Mathematically this translates into the
problem of constructing dilations of completely positive semigroups on von Neu-
mann algebras. Based on the intuition offered by physics, Kümmerer has shown
[41, 39, 40, 43] that the Markov dilations arise as couplings with quantum white
noises. His analysis leads to a general definition of quantum Lévy processes and
white noises with respect to which, Markov processes can be constructed as solu-
tions of stochastic differential equations [38]. Particular cases of such stochastic
calculi have been developed by Hudson and Parthasarathy [32] for the bosonic
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noise, and by Applebaum and Hudson [3] for fermionic noise, generalizing the
classical theory of Itô integration and stochastic differential equations.

In the early 80’s Voiculescu [65] discovered the theory of free probability in
which the concept of freeness plays a similar role to that of independence in
classical probability, but this time for non-commuting random variables. The
free noise can be represented through creation and annihilation operators on the
full Fock space over L2(R) and the stochastic integration [44, 7] parallels the one
of Hudson and Partahsarathy.

The vectors of the bosonic Fock space are completely symmetric under the
permutation of the ‘one-particle states’, while those of the free Fock spaces behave
as totally ordered sets. Can we construct Fock spaces with the same symmetry
as that of ‘trees’ or ‘cycles’ ? This question was the entering point of my in-
vestigation together with Hans Maassen in the study of other noises in quantum
probability. Our approach was inspired by Joyal’s theory of combinatorial species
of structures [35, 5]. It turned out that we had a different perspective at the type
of algebras of creation and annihilation operators called generalised Brownian
motion by Bożejko and Speicher [9, 13, 10, 11]. The results of our analysis are
described in section 6 of this chapter. In the next sections we will review some
facts on non-commutative probability, Gaussian processes over Hilbert spaces,
Fock spaces and generalised Brownian motion.

1 Some general definitions

Non-commutative probability theory is an inhomogeneous field lying at the cross-
ings between quantum physics, probability theory and operator algebras. The
aims range from describing photon counting measurements in quantum optics
[58] to random matrices and II1 factors of free groups [65]. In doing this,
one tries to integrate concepts and techniques from probability into the the-
ory of operator algebras. We will give a few necessary definitions and refer to
[6, 19, 22, 31, 46, 50] for further reading on quantum probability and its appli-
cation in quantum physics.

In a purely algebraic setting, a non-commutative probability space consists of
a pair (A, ρ) where A is a unital algebra over C, and ρ is a linear functional
ρ : A → C such that ρ(1) = 1. If A is a ∗-algebra we require that ρ(a∗) = ρ(a)
and that ρ is positive, i.e. ρ(a∗a) ≥ 0 for all a ∈ A. An element of a ∈ A is called
random variable, and the distribution of a is the functional µa on the algebra
of complex polynomials in one variable C[X ], defined by µa(P ) = ρ(P (a)). In
this work we deal mainly with W ∗-probability spaces, in which case A is a von
Neumann algebra, i.e. an algebra of bounded operators on a Hilbert space which
is closed in the σ-weak topology (or equivalently in the weak or strong operator
topology), and ρ a normal state, i.e. a positive functional continuous with respect
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to this topology [37]. The distribution of a selfadjoint element a ∈ A is then given
by a measure dµa with support contained in the spectrum of a such that∫

P (t)dµa(t) = ρ(P (a)) ∀P ∈ C[X ].

and similarly for measurable functions on the spectrum of a. In particular if
(X,Σ, µ) is a ‘classical’ probability space then the corresponding object in our
algebraic formulation is the W ∗-probability space (L∞(X), E) where E(f) =∫
fdµ. The events are identified with the orthogonal projections in L∞(X).

Occasionally we will work with C∗-probability spaces (A, ρ) in which case A is a
C∗-algebra and ρ a state on A.

When dealing with a family {ai}i∈I of random variables, we define their joint
distribution as the linear functional µ : C 〈Xi|i ∈ I〉 → C on non-commutative
polynomials in |I| variables defined by µ(P ) = ρ(h(P )) where h : C 〈Xi|i ∈ I〉 →
A is the unique homomorphism such that h(xi) = ai. The joint ∗-distribution
can be defined along the same lines for ∗-probability spaces.

The notion of independence is essential in probability theory and has an obvi-
ous extension to the non-commutative context. In a non-commutative probability
space (A, ρ), a family of subalgebras Ai ⊂ A is independent if the algebras com-
mute with each other (i.e. [Ai, Aj ] = 0 if i �= j) and ρ(a1 . . . an) = ρ(a1) . . . ρ(an)
whenever ak ∈ Aik and k �= l implies ik �= il. This means that we can calculate
the joint distribution of {ai}ni=1 in terms of the individual distributions of the
variables ai. In particular for two real random variables X,Y in a C∗-probability
space, the measure µX+Y which determines the distribution of the sum X + Y
is the convolution µX ∗ µY of the individual measures.

2 Gaussian processes in classical probability

A random variable q is called Gaussian of variance a if its distribution is given
by dµq(x) := (2πa)−

1
2 exp(− 1

2ax
2)dx. The importance of this distribution stems

from the central limit theorem, which in its simplest form says the following:

Theorem 2.1 Let {qi}∞i=1 be a family of independent, identically distributed ran-
dom variables with E(qi) = 0, E(q2i ) = a. Let

Qn = n−1/2
n∑
i=1

qi,

then as n→∞, Qn approaches a Gaussian random variable of variance a in the
sense that for any bounded continuous function on R,

E(F (Qn))→ (2πa)−
1
2

∫
e−y

2/2aF (y)dy.
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When dealing with a family of random variables or a process, one is interested
in the joint distribution of n-tuples q1, . . . , qn of random variables in that process.
The Gaussian processes are characterized by the Fourier transform of the joint
probability distributions

Cq1,...,qn(t1, . . . , tn) :=
∫
ei
∑

xjtjdµq1,...,qn(x1, . . . , xn) = e
− 1

2

∑
c(i,j)titj ,

where c(i, j) = E(qiqj) is the covariance of qi and qj . The Brownian motion is the
Gaussian process {B(t)}t≥0 with covariance E(B(t)B(s)) = min(s, t). Intuitively,
B(t) is the limit limn→∞ n−1/2Q[nt] where [s] is the integer part of s. The
increments B(t)−B(s) corresponding to the time intervals [s, t] have stationary
gaussian distribution with variance t−s and are independent for disjoint intervals.
An elegant way to deal with Gaussian processes is by making use of the following
theorem.

Theorem 2.2 [54] Let K be a real Hilbert space. Then there exists a probability
measure space (XK,FK, µK) and for each f ∈ K a random variable B(f) such
that f → B(f) is linear and for any f1, . . . , fn ∈ K, (B(f1), . . . , B(fn)) are
jointly Gaussian with covariance 〈fi, fj〉, where 〈·, ·〉 is the inner product on K.
In particular if f ⊥ g then B(f) and B(g) are independent.

Then the existence of a process with a given covariance c(·, ·) is equivalent to
c(·, ·) being positive definite as a kernel. The Brownian motion is obtained by
taking B(t) := ω(χ[0,t]) for χ[0,t] the characteristic function of the interval [0, t],
an element of the real Hilbert space K := L2

R
(R+).

The Gaussian process {B(f)}f∈K is ‘equivalent’ to a well known construction
in quantum physics, the symmetric Fock space and the vacuum representation of
the algebra of canonical commutation relations (C.C.R.) which we briefly describe
here. Let H be a complex Hilbert space. The symmetric Fock space over H is

Fs(H) :=
∞⊕
n=0

H⊗sn,

where H⊗sn denotes the n-fold symmetric tensor product of H, that is the sub-
space of H⊗n consisting of vectors which are invariant under the unitary action
of the symmetric group S(n) permuting the vectors in the tensor product. Let
Pn denote the projection onto H⊗sn, then for any vector f ∈ H we define the
creation operator acting on a vector ψ ∈ H⊗sn

a∗(f)ψ =
√
n+ 1 Pn+1(f ⊗ ψ).

The adjoint a(f) of a∗(f) is called annihilation operator and the ∗-algebra formed
by all a∗(f), a(g) satisfies the commutation relations

a(f)a∗(g)− a∗(g)a(f) = 〈f, g〉1
a(f)a(g)− a(g)a(f) = 0.
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The distinguished unit vector Ω such that H⊗0 = CΩ satisfies a(f)Ω = 0 and
is called vacuum while the associated state ρ, vacuum state. Another important
operator is the field ω(f) := a(f) + a∗(f) which is essentially selfadjoint on the
domain of ‘finite number of particles’ and can thus be extended to an unbounded
selfadjoint operator denoted by the same symbol. The rigorous study of the
algebra of creation and annihilation operators and its representations has to be
carried out in the framework of C∗-algebras. One constructs the unitary Weyl
operators W (f) = exp(iω(f)) satisfying the relations

W (f)W (g) = e−iIm〈f,g〉W (f + g),

and the C∗-algebra generated by {W (f)}f∈H which we denote by CCR(H). The
vacuum expectation of a Weyl operator is ρ(W (f)) = e−||f ||

2/2. For a detailed
analysis of the C.C.R. algebra and its representations we refer to the monographs
[14, 15].

The map CCR has nice properties, i.e. it is a functor from the category of
Hilbert spaces to the category of C∗-probability spaces having the state preserv-
ing completely positive maps as morphisms. For any contraction T : H1 → H2

the vacuum preserving map CCR(T ) : CCR(h1)→ CCR(h2) given by

CCR(T ) :W (f) �→ e(||Tf ||
2−||f ||2)/2W (Tf)

is completely positive. Moreover CCR(T1)CCR(T2) = CCR(T1T2). Such func-
tors are called white noise functors and the reason for giving such a name is
explained below.

Let us leave the C∗-algebraic framework and consider the ∗-algebra of (un-
bounded) creation and annihilation operators and the vacuum expectation of the
monomials in these operators. In particular, if we chooseH = KC, the complexifi-
cation of the real Hilbert space K, then the fields {ω(f)}f∈K form a commutative
algebra and their joint distribution with respect to the vacuum are of the form

ρ

(
n∏
i=1

eitiω(fi)

)
= ρ

(
ei
∑

tiω(fi)
)
= e−||

∑
tifi||2/4 = e−

1
2

∑
titj〈fi,fj〉,

which is precisely that prescribed by theorem 2.2. In other words {ω(f)}f∈K
form a Gaussian process over the Hilbert space K with covariance 〈·, ·〉. If we
denote by Γs(K) the von Neumann algebra generated by the selfadjoint opera-
tors {ω(f)}f∈K then we obtain another functor Γs this time from the category
of real Hilbert spaces to the category of W ∗-probability spaces which is called
the Gaussian functor, or functor of white noise. For this reason we will name
functors of white noise all functors from (real) Hilbert spaces to non-commutative
probability spaces which map the zero dimensional Hilbert space into the algebra
C.
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Remark. In fact for any real Hilbert sub-space K′ of the Hilbert space H, we
obtain an associated Gaussian process {ω(f)}f∈K′, but in general the different
processes do not commute with each other. A stochastic theory for such non-
commuting Brownian motions, and other ‘quantum noises’ has been developed
by Hudson and Parthasarathy [50] and is called quantum stochastic calculus.

An explicit expression of the expectations of monomials of field operators is
given by the following formula which is the starting point of our investigation of
generalised Brownian motion:

ρ(ω(f1) . . . ω(fn)) =
∑

V∈P2(n)

∏
(l,r)∈V

〈fl, fr〉 .

The sum is taken over all pair partitions i.e., the partitions of the ordered set
(1, . . . , n) into subsets with two elements, and by convention it is set to zero for
odd n.

3 Free probability

The notion of freeness has been introduced by Voiculescu around 1985, and is
the key concept of an essentially non-commutative probability theory called free
probability. The results presented in this section are standard and can be found
in [65].

Definition 3.1 Let (A, ρ) be a non-commutative probability space. A family
(Ai)i∈I of unital subalgebras of A is called free if ρ(a1 . . . an) = 0 whenever
aj ∈ Aij , i1 �= i2 �= · · · �= in, and ρ(aij ) = 0∀j. A family (bi)i∈I of random
variables is free (∗-free) if the algebras (∗-algebras) which they generate form a
free family.

Remark. This definition is at the first sight, of a different nature than that
of independence, but here also one can compute mixed moments ρ(a1 . . . an) for
arbitrary aj ∈ Aij by writing ai = ρ(ai)1+

◦
ai with ρ(

◦
ai) = 0 using induction by n

and the rule given above. Speicher has shown that the combinatorics involved in
such calculations can be beautifully expressed in terms of non-crossing partitions
and free cumulants [56].

Freeness is a notion of independence equally interesting to its classical coun-
terpart. In fact all the objects defined in the previous section have their ‘free’
counterpart.

IfX and Y are two free random variables in a non-commutative probability space,
then the distribution µX+Y depends only on µX and µY and it is called the free
convolution of µX and µY : µX+Y = µX � µY [65]. The so called R-transform
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plays a similar role to that of the Fourier transform for the classical convolution,
in the ‘linerization’ of the free convolution.

The semicircle law centered at a ∈ R and of radius r is the distribution
γa,r : C[X ]→ C defined by

γa,r(P ) =
2
πr2

∫ a+r

a−r
P (t)

√
r2 − (t− a)2dt.

Such distributions appear in the free central limit theorem.

Theorem 3.2 Let (A, ρ) be a non-commutative probability space, and let {qj}∞j=1

be a free family of identically distributed random variables in A such that E(qi) =
0, E(q2i ) = r

2/4. Let

Qn = n−1/2
n∑
i=1

qi,

then as n→∞, Qn converges in distribution to the semicircle law Γ0,r.

Again, let H be a Hilbert space. We consider now the free analog of the
CCR(H) algebra, that is the algebra of creation and annihilation operators on
the full Fock space over H,

F(H) :=
∞⊕
n=0

H⊗n.

The left creation and annihilation operators are defined by l(f)Ω = f, l∗(f)Ω = 0
and

l(f) : f1 ⊗ . . .⊗ fn �→ f ⊗ f1 ⊗ . . .⊗ fn,
l∗(f) : f1 ⊗ . . .⊗ fn �→ 〈f, f1〉 f2 ⊗ . . .⊗ fn.

The ‘commutation relations’ are now l∗(h1)l(h2) = 〈h1, h2〉1 implying that l(e)
is an isometry for any unit vector e and the C∗-algebra C∗(l(H)) is isomorphic to
the Cuntz algebraO∞ [18] for infinite dimensionalH, and an extension ofO|H| by
the compact operators for |H| <∞. The fields are denoted by s(f) := l(f)+l∗(f)
and are bounded selfadjoint operators whose distribution with respect to the
vacuum state ρH, is the semicircle law γ0,2||f ||. Moreover, for any family of
pairwise orthogonal vectors {fi}i∈I , the family {s(fi)}i∈I is free.

Let us considerH = KC for a real Hilbert space K and denote by Γ(K) the von
Neumann algebra generated by the fields s(f) with f ∈ K. Then the linear map
s : K → Γ(K) is a free Gaussian process over K. Let T be a separable topological
space and c : T × T → R be a jointly continous function which is a positive
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definite kernel on T, i.e. for all n ≥ 0, α1, . . . , αn ∈ R and all t1, . . . , tn ∈ T the
following inequality holds

n∑
i,j=1

αiαj c(ti, tj) ≥ 0.

In a standard way (corollary 2.4 in [54]) one constructs the separable real Hilbert
space Kc associated to the kernel c and the vectors ft ∈ Kc such that 〈ft, fs〉 =
c(s, t). Then {s(ft)}t∈T is a free Gaussian process with covariance c. Such
processes are in general non-commutative unless one is dealing with a single
random variable, and the von Neumann algebras Γ(Kc) which they generate are
type II1 non-hyperfinite factors for which the vacuum state ρKc is the unique
tracial state, i.e. ρKc(ab) = ρKc(ba). These factors are isomorphic to the von
Neumann algebras of the free group with |Kc| generators, F|Kc|.

The map Γ : K → (Γ(K), ρK) is a functor from the category of real Hilbert spaces
with contractions to the category of W ∗-probability spaces with state preserving
completely positive maps. Any contraction T : K1 → K2 between two real Hilbert
spaces induces a natural map TC : (K1)C → (K2)C and its second quantisation at
the Hilbert space level

F(TC) : F((K1)C)→ F((K2)C)
F(TC) : f1 ⊗ . . .⊗ fn �→ TCf1 ⊗ . . .⊗ TCfn.

There exists a unique unital, trace preserving completely positive map Γ(T ) :
Γ(K1)→ Γ(K2) which satisfies

Γ(T )XΩ = F(TC)XΩ.

If T is a isometry then Γ(T ) is a faithful ∗-homomorphism, and if T is the
orthogonal projection onto a subspace, then Γ(T ) is a conditional expectation.

The joint distribution of the field operators {s(f)}f∈K is given by a similar
formula to that of the Gaussian case

ρ(s(f1) . . . s(fn)) =
∑

V∈P(NC)
2 (n)

∏
(l,r)∈V

〈fl, fr〉 ,

but with the sum running only over the non-crossing pair partitions, i.e. those
which do not contain pairs pi = (li, ri) for i = 1, 2 such that l1 < l2 < r1 < r2.

4 Fermions and graded independence

Another fundamental example of Fock space in physics is the fermionic or anti-
symmetric Fock space. This space appears in the description of multi-particle
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states of identical fermions, which are particles with semi-integer spin. For a
Hilbert space H, the associated Fock space is

Fa(H) :=
∞⊕
n=0

H⊗an

where H⊗an is the n-fold anti-symmetric tensor product of H. The creation and
annihilation operators can be defined similarly to the bosonic case and satisfy
the canonical anti-commutation relations, (C.A.R.):

a(f)a∗(g) + a∗(g)a(f) = 〈f, g〉1
a(f)(g) + a(g)a(f) = 0.

The fermionic C∗-algebra CAR(H) generated by the bounded operators
{a�(f)}f∈H is isomorphic to

⊗|H|
M(C2). By completion in the strong operator

topology in certain representations one obtains the type IIIλ factors Rλ of Powers
[51] for 0 < λ < 1 which are the unique hyperfinite factors of this type.

As in the bosonic and free cases, we take H = K ⊕ iK where K is a real
Hilbert space and construct the von Neumann algebra Γa(K) generated by the
fields ω(f) = a(f) + a∗(f) with f ∈ K. If |K| = ∞ then Γa(K) is isomorphic to
the hyperfinite factor of type II1 and the vacuum state ρ is the unique trace of
Γa(K). In a similar fashion to the functors Γs and Γ, the map Γa is a functor of
white noise. The joint distributions are given by

ρ(ω(f1) . . . ω(fn)) =
∑

V∈P2(n)

(−1)cr(V)
∏

(l,r)∈V
〈fl, fr〉 ,

where cr(V) is the number of crossings of V , that is the number of pairs (p1, p2)
of elements pi = (li, ri) of V for which l1 < l2 < r1 < r2.

Two random variables ω(f) and ω(g) corresponding to orthogonal vectors in K
should be ‘independent’ in some sense, like it was the case for bosonic and free
Gaussian processes. In order to define the ‘fermionic independence’ we need to
introduce one more structure, namely a Z2-grading.

Definition 4.1 [47] Let (A, ρ) be a probability space. An automorphism γ of A
which preserves the state ρ, is called Z2-grading if γ2 = idA. Two subalgebras
A1 and A2 of A which are invariant under γ, are called graded independent if
they gradely commute, i.e. a1a2 = (−1)∂a1∂a2a2a1 for all ai ∈ Ai which satisfy
γai = (−1)∂aiai, where ∂ai ∈ {0, 1} is called the grading of ai, and moreover
φ(a1a2) = φ(a1)φ(a2). In the case of W ∗-probability spaces, if A = A1

∨A2

then we call A the graded tensor product of A1 and A2.
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On the probability space Γa(K), we have the Z2-grading given by γ = Γa(−1),
and for any subspaces K1,K2 such that K = K1⊕K2 the corresponding algebras
Γa(K1),Γa(K2) are gradely independent in Γa(K). Similar results hold for the
functor H → CAR(H).

5 Generalised Brownian motion

After having presented the three notions of independence and their associated
Gaussian processes, we formulate the following natural questions: what is the
general form of a ‘Gaussian process’, and is there always a notion of independence
attached to it ?

A reasonable answer to the first question is: a Gaussian process over a real
Hilbert space K is uniquely determined by a positive functional ρ on the free
unital ∗-algebra A(K) over the real Hilbert space K (see definition 2.1 in chap-
ter III), such that the joint distribution is invariant under all the orthogonal
transformations O on K:

ρ(ω(Of1) . . . ω(Ofn)) = ρ(ω(f1) . . . ω(fn)).

Let e1, e2 be two orthogonal normalized vectors inK. Then ρ(ω(e1)+ω(e2)/
√
2) =

ρ(ω(e1)) =
√
2ρ(ω(e1)) which implies ρ(ω(f)) = 0 for any vector f . By using the

linearity of ω and the invariance of ρ one can show that the general form of the
joint distribution is

ρt(ω(f1) . . . ω(fn)) =
∑

V∈P2(n)

t(V)
∏

(l,r)∈V
〈fl, fr〉 , (5.1)

where t : P2(∞)→ C is a complex valued function defined on the set of all pair
partitions P2(∞) :=

⋃∞
n=0 P2(2n), which characterizes completely the Gaussian

process. In particular the expectation of monomials containing an odd number
of random variables is zero. Following the original term coined by Bożejko and
Speicher [10, 11], we will call such a Gaussian process generalised Brownian mo-
tion and the functional ρt, Gaussian state. The characterization of the positivity
of ρt directly in terms of the function t will be one of the main tasks in chapter
III.

The first example of generalised Brownian motion has been treated in [10, 11],
and arises from the Fock representation of the q-deformed commutation relations

a(f)a∗(g)− qa∗(g)a(f) = 〈f, g〉1.
These relations interpolate between the bosonic (q = 1), free (q = 0), and
fermionic (q = −1) ones. Various aspects have been investigated in the liter-
ature [21, 23, 26, 33, 34, 45, 55, 67] to which we refer for further details. The
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cyclic representation with respect to the vacuum vector Ω satisfying a(f)Ω = 0
for all f ∈ H, can be described in terms of a deformation of the representation
of the algebra of creation and annihilation operators on the full Fock space over
H. On the space F (fin)(H) of linear combinations of tensor products of vectors
in H, one defines the inner product:

〈f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gm〉q := δm,n

∑
π∈S(n)

qi(π)
〈
f1, gπ(1)

〉
. . .
〈
fn, gπ(n)

〉
,

where S(n) denotes the symmetric group of permutations of n elements and i(π)
is the number of inversions of the permutation π

i(π) := |{(i, j) : 1 ≤ i < j ≤ n, π(i) > π(j)}|.
The positivity of the inner product follows from the fact that the function qi(·) :
S(n)→ C is positive definite for −1 ≤ q ≤ 1. The q-Fock space Fq(H) is obtained
by (dividing out the kernel for q = ±1 and) completion of F (fin)(H) with respect
to 〈·, ·〉q. The creation operator is defined as for the full Fock space by tensoring
on the left side. Due to the q-dependent inner product the action of the adjoint
will depend on q:

a(f)f1 ⊗ . . . fn =
n∑
i=1

qi 〈f, fi〉 f1 ⊗ . . .⊗ f̌i ⊗ . . .⊗ fn,

and a(f)Ω = 0. The field operators ω(f) are bounded for −1 < q < 1, and have
joint distributions as in equation (5.1), with

tq(V) = qcr(V).
In reference [9] the authors analyze the operator-algebraic and functorial proper-
ties of the von Neumann algebra Γq(K) generated by the fields {ω(f)}f∈K acting
on Fq(KC). They prove that Γq(K) is a non-hyperfinite type II1 factor for infinite
dimensional K. The vacuum state is faithful for the von Neumann algebra and
thus one can define the injective map

Γq(K) → Fq(KC),
X �→ XΩ.

The inverse image of a vector f1 ⊗ . . . ⊗ fn is called Wick product and denoted
Ψ(f1⊗ . . .⊗fn). The Wick products behave nicely under the second quantisation
maps. Let T : K → K′ be a contraction between real Hilbert spaces, then

Γq(T ) : Ψ(f1 ⊗ . . .⊗ fn) �→ Ψ(Tf1 ⊗ . . .⊗ Tfn)
extends to a completely positive map from Γq(K) to Γq(K′) which preserves the
vacuum state. Moreover Γq(T1)Γq(T2) = Γq(T1T2) and thus, Γq is a functor of
white noise.
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An interesting question is that regarding the stability of the C∗-algebra of cre-
ation and annihilation operators C∗(a�(h) : h ∈ H) when the deformation pa-
rameter q moves away from zero. It has been shown in [20, 33] that in a certain
interval around zero, the algebra C∗(a�(h) : h ∈ H) is isomorphic to the exten-
sion of the Cuntz algebra O|H| by the compact operators for finite dimensional
H. A similar question for the case of the von Neumann algebra Γq(K) has not
been answered yet.

Another example of interpolation between the free and classical Gaussian
processes with parameter 0 ≤ r ≤ 1 is given in [13]:

tr(V) = r|V|−B(V),
where B(V) denotes the number of blocks, or connected components of V . The
state ρtr is tracial for the algebra of Gaussian fields over a real Hilbert space
K. A particular feature of this case is that the cyclic representation space is
not a ‘deformation’ of the full Fock space over KC like it was the case for the
q-deformations, but a bigger space containing more copies of the tensor products
K⊗n

C
on the level n of the representation space.

We notice that both examples are based on representations of a larger unital
free ∗-algebra C(KC) over the Hilbert space KC which we call algebra of ‘creation
and annihilation operators’. We regard A(K) as sub-algebra of C(KC) through
the identification ω(f) = a(f) + a∗(f). Then the Gaussian state ρt on A(K) is
the restriction of the Fock state on C(KC) which for simplicity we denote by the
same symbol ρt. The precise definitions can be found on page 64. The functions
t on pair partitions which give rise to positive Fock functionals ρt will be called
positive definite. In chapter III it will be show that t is positive definite already if
ρt is positive on A(K), which explains why in all examples we encounter creation
and annihilation operators.

The second question from the beginning of this section inquires about the
existence of a notion of independence attached to a given generalised Brownian
motion. This question was answered negatively [45] in the case of q-deformed
commutation relations, in the sense that there exists no q-convolution of mea-
sures: the distribution µX+Y of the sum of of two q-independent real valued
random variables X and Y cannot be calculated in terms of the individual dis-
tributions µX and µY .
A more general result proved by Speicher [57] shows that under certain universal-
ity conditions (associativity, universal calculation rule for mixed moments) there
are no notions of products of probability spaces (unital algebras with normalized
linear functionals), other than the tensor and the free product. We have seen
however that the Fermionic independence can be defined if the probability spaces
have more structure, escaping the no-go theorem of Speicher. Also, there exist
notions of q-convolutions of measures such as those treated in [2, 48]. Alterna-
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tively, one can relax the independence to the notion of statistical independence
or that of pyramidal independence [13].

The generalised Brownian motion can be obtained in the limit n → ∞, by
taking partial sums Q[nt] of ‘identically distributed’ random variables in the fol-
lowing non-commutative central limit theorem [13].

Theorem 5.1 Let (A, ρ) be a ∗-probability space. Consider selfadjoint elements
qi = q∗i ∈ A which fulfill the following assumptions:
i) we have ρ(qi(1) . . . qi(n)) = 0 for all n ∈ N and all i(1), . . . , i(n) with the property
that one of the i(k) is different from all others.
ii) for each permutation π of the natural numbers we have

ρ(qi(1) . . . qi(n)) = ρ(qπ(i(1)) . . . qπ(i(n))),

for all n ∈ N and i(1), . . . , i(n) ∈ N.
Let QN =

∑N
i=1 qi/

√
N . Then in the limit N →∞ the process Q[Nt] converges in

law to the generalised Brownian motion with associated positive definite function
on pair partitions given by

t(V) := ρ(qi(1) . . . qi(2n)),
where V ∈ P2(2n) and the indices are chosen such that for any l �= r ∈ {1, . . . , 2n}
then i(l) = i(r) if and only if (l, r) ∈ V.

Finally, we would like to mention the work of Köstler [38] who has developed
a general theory of non-commutative Markov processes, white noise and Lévy
processes. His contribution is in the spirit of Kümmerer’s approach to quantum
probability [42, 41, 39]. The white noise is described by a finite probability space
of A0-valued random variables i.e., a von Neumann algebra A, endowed with a
tracial normal state ρ together with a subalgebra A0 and the state preserving
conditional expectation P0 from A to A0 [61]. There exists a filtration of sub-
algebras AI of A, for all closed intervals I of the time axis R. A group (St)t∈R

of automorphisms of (A, ρ) acts as a shift on the local algebras St(AI) = AI+t

and lets A0 pointwise invariant. For disjoint intervals I, J the local algebras AI

and AJ are statistically independent over A0 i.e., PI ◦PJ = P0 a notion in which
we recognize a commuting square of von Neumann algebras [24]. The quan-
tum Brownian motion is an additive cocycle (Bt)t∈R with respect to the white
noise (A, ρ, St,AI) over A0 that is, a process which is adapted to the filtration
A[0,t], satisfying Bs+t = Bt + St(Bs) and certain continuity requirements in the
Lp-norms (see definitions in chapter 3 of [38]).

The Gaussian process {ωt(f)}f∈L2
R
(R+) associated to a positive definite function

t for which the vacuum state ρt is tracial for the von Neumann algebra A :=
Γt(L2(R+)) fits into this framework. The local algebras are defined by

AI := vN{ωt(f) : f = χIf ∈ L2R(R+)} ⊂ Γt(L2(R+)),
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and A0 := C. In this case Γt is a functor of white noise (for this result we refer
to chapter III) and the conditional expectations PI are given by Γt(P (I)) where
P (I) is the orthogonal projection onto the subspace of functions with support in
the interval I.
But not all Gaussian states ρt are tracial. A class of non-tracial generalised
Brownian motion is analyzed in chapter IV.

6 Outline of results

Chapter II employs the combinatorial concept of species of structures to con-
struct generalisations of the symmetric and free Fock spaces, and define the cre-
ation and annihilation operators on these spaces which are derived from certain
‘actions’ on the structures.

A species of structures F is a functor from the category B which has as objects
the finite sets and as morphisms bijections between finite sets, to the category
E of finite sets with functions as morphisms. Let U be a finite set. Then F [U ]
is the set of F -structures over U ; for any bijection σ : U → V there exists
a map F [σ] : F [U ] → F [V ] called transport along the bijection σ, such that
F [σ · τ ] = F [σ] ◦ F [τ ] and F [idU ] = idF [U ]. Some examples of species are given
on page 28.

The calculus with species of structures has been developed by Joyal in [35] where
he defines the following operations between species: sum/difference, product,
cartesian product, substitution and derivation. This allows one to write equations
with species just in the same way one does for formal power series. We have to
do here with an instance of categorification [4]. For example the equation

A = X · E(A)
is an implicit definition of the species A of rooted trees, and can be read off as
follows: a rooted tree is composed of a root (X) and a set (the species of sets is
denoted by E) of rooted trees (growing out of the root). Many more applications
can be found in the monograph [5].

For a given species F we define an endofunctor FF of the category of Hilbert
spaces which maps a Hilbert spaceH to the symmetric Hilbert space FF (H) given
by

FF (H) :=
∞⊕
n=0

1
n!
<2sym(F [n]→ H⊗n),

where <2sym(F [n]→ H⊗n) denotes the functions which intertwine with the natural
actions of S(n) on the two sides, and 1

n! is a factor referring to the inner product.
In particular the species E of sets, the species L of linear orders and the species
E± of ordered sets, give rise to the symmetric Fock space, the full Fock space,



6. Outline of results 15

and respectively the anti-symmetric Fock space over K. The construction of the
functor FF is inspired by the analytic functor F (·) of Joyal [36] which maps a
set of colors J to the set of J-colored unlabeled F -structures

F (J) :=
∞∑
n=0

F [n]× Jn / S(n).

which can also be interpreted as orthogonal basis for FF (H) if (ej)j∈J is an
orthogonal basis of H.

On FF (H) we can define creation and annihilation operators by choosing a
weight j on the species F × F ′ where F ′ is the derivative of F . By definition
F ′[U ] = F [U ∪ {∗}] where ‘∗’ is a distinguished point and the transport is done
along bijections which keep the point ‘∗’ fixed. A weight w on a speciesG attaches
in a functorial way a coefficient w(s) to any structure s of G. Alternatively j
defines a map

j :
∞⊕
n=0

<2(F [n])→
∞⊕
n=0

<2(F [n])

which sends a basis vector δs ∈ <2(F [n]) to a vector in <2(F [n + 1]) and whose
matrix coefficients are 〈j δs, δt〉 := j(s, t). Let h ∈ H, and ϕ ∈ F (n+1)(H) a
vector belonging to the n+1-th level of the symmetric Hilbert space F (n+1)(H),
then

a(h) : <2sym(F [n+ 1]→ H⊗n+1)→ <2sym(F [n]→ H⊗n),
(a(h)ϕ)(s) :=

∑
t∈F [n+1]

j(s, t) inpn(h, ϕ(g)),

with inpn(h, h0 ⊗ . . . ⊗ hn) = 〈h, hn〉h0 ⊗ . . . ⊗ hn−1. Various properties of the
creation and annihilation operators are discussed on pages 37-41 and subsequently
applied to concrete examples:

1) the species A of rooted trees (page 43) with weight jA(t1, t2) = 1 if the
tree t1 can be obtained from t2 by ‘removing the leaf labeled by ∗’, and otherwise
zero, gives rise to creation and annihilation operators satisfying the commutation
relations

a(h1)a∗(h2)− a∗(h2)a(h1) = 〈h1, h2〉N,
where N denotes the number operator which assigns the value 1 to the vacuum.

2) the species Ds of simple directed graphs (page 45) with a weight jDs,q

depending on the real parameter 0 ≥ q ≥ 1 gives rise to the q-commutation
relations

a(h1)a∗(h2)− qa∗(h2)a(h1) = 〈h1, h2〉1.

The last section makes the connection with the generalised Brownian motion.
It turns out that the algebras of creation and annihilation operators constructed
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from pairs (F, j) as above are always of the type defined by Bożejko and Speicher
in[13], and in particular the fields ωF (f) = aF (f) + a∗F (f) form a Gaussian
process. Some operations with species such as the sum, the product, the cartesian
product and the composition have counterparts in the symmetric Hilbert spaces.

In the end we use the species Bal of ‘ballots’ to obtain the generalised Brow-
nian motion with positive definite function t(V) = q|V|−B(V) for 0 ≤ q ≤ 1, which
has been found in [13].

Chapter III builds on the combinatorial results from the previous one. The first
aim is to have a general understanding of the GNS representation of the algebra
of creation and annihilation {a�(f)}f∈H over a Hilbert space H, with respect
to a Fock state ρt where t is a positive definite function on pair partitions.
Subsequently we concentrate on the Gaussian process {ω(f)}f∈K over a real
Hilbert space K and its functorial properties.

Let ρt be a positive definite function and H a Hilbert space. Then the repre-
sentation of C(H) with respect to ρt is given by:

1) The Hilbert space

FV (H) :=
∞⊕
n=0

1
n!
Vn ⊗s H⊗n

where (Vn)∞n=0 are Hilbert spaces on which there exists a unitary representa-
tion Un of the symmetric group S(n). The symbol ⊗s denotes the subspace of
the tensor product consisting of vectors which are invariant under the action of
Un(τ) ⊗ Ũn(τ) for all τ in S(n). Note that the spaces FF (H) used in chapter II
are naturally isomorphic with the space FV (H) for Vn = <2(F [n]). Let Pn be the
orthogonal projection onto this subspace and vn ⊗s ψn := n!Pnv ⊗ ψn

2) The creation and annihilation operators are defined with the help of the
linear maps jn : Vn → Vn+1 with the same intertwining properties as their
counterparts j in chapter II

a∗(h) : vn ⊗s ψn �→ (jnvn)⊗s (ψn ⊗ h).

The correspondence between t and (Vn, jn)n≥0 is bijective as proved in theo-
rems 2.6 and 2.7. In fact the positivity of the functions t can be directly char-
acterized through an algebraic object, the ∗-semigroup of broken pair partitions
denoted BP2(∞). The elements of this semigroup can be described graphically
as segments of pair partitions, that is the part of the graphic of a pair partition
which is contained between two vertical lines. A precise definition is given on page
71. The product of two such segments is obtained by joining the legs which point
to each other according to their order on the vertical. The ∗-operation is the re-
flexion with respect to a vertical line. In particular P2(∞) is a subset of BP2(∞).
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The function t is positive definite if and only if its extension t̂ to BP2(∞) by
defining t̂(d) = 0 on the complement of P2(∞), is a positive functional on the
∗-semigroup (theorem 3.2 on page 73). The GNS-like representation of BP2(∞)
with respect to t̂ produces the Hilbert space V :=

⊕∞
n=0 Vn, a distinguished unit

vector ξ ∈ V0, and the representation χt such that t̂(d) = 〈ξ, χt(d)ξ〉V . The
space Vn contains the dense domain of linear combinations of vectors of the form
χt(d)ξ, with d ∈ BP(n,0)

2 (∞) the set of diagrams having n left legs and no right
legs. The permutation of the left legs produces the unitary representations Un
on Vn. The diagram d0 ∈ BP(1,0)

2 (∞) containing just one left leg gives rise to the
operator j := χ(d0) whose restriction to Vn is jn.

If t is positive definite, i.e. the functional ρt is positive on C(KC) for any real
Hilbert space K, then by restriction, ρt is also positive on the ∗-algebra A(K) of
the fields {ω(f)}f∈K. Using the notion of generalised Wick products we prove in
section 4 that the converse is also true, namely for any Gaussian process with
joint distribution as in eq. (5.1), the Fock functional ρt is positive on C(KC) as
well.

Let (F̃t(K), π̃t, Ω̃t) be the GNS representation of (A(K), ρt �A(K)). The gen-
eralised Wick products (see definition 4.1) are operators acting on F̃t(K) and
denoted by Ψ(V , f) with V a pair partition on a subset P of an ordered set X ,
and f : X \ P → K. The following decomposition holds for monomials in field
operators:

ωt(f(1)) . . . ωt(f(n)) =
∑
P⊂n

∑
V∈P2(P )

ηf (V) Ψ(V , f �n\P )

with n := {1, . . . , n}, and the coefficients ηf (V) :=
∏

(l,r)∈V 〈f(l), f(r)〉. The Wick
products are important because they reveal the underlying Fock-structure of the
representation space F̃t(K). Creation and annihilation operators can be defined
such that for any f : n→ K

n∏
i=1

a�i(f(i))Ω̃t =
∑
V
ηf (V) Ψ(V , f �n\supp(V))Ω̃t,

where the sum is taken over those sets of pairs (l, r) in n for which a�r(f(r)) =
a∗(f(r)) and a�l (f(l)) = a(f(l)). The analysis of the Wick operator algebra shows
that the the function t is positive definite and ω(f) = a(f) + a∗(f) ( theorem
4.6). For this reason we can drop the ‘tilde’ superscript and identify F̃t(K) with
the symmetric Hilbert space Ft(KC).

Section 5 makes an analysis of the functorial properties of the gaussian pro-
cesses {ωt(f)}f∈K. If is clear from its definition that the map Ft : H → Ft(H)
is an endofunctor of the category of Hilbert spaces with contractions. We are
interested primarily in functors at the algebraic level, that is functors from (real)
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Hilbert spaces to non-commutative probability spaces in their W ∗-version. The
morphisms between two probability spaces (A, ρA) and (B, ρB) are the state and
unit preserving completely positive maps from A to B. An isometry is mapped
under such functors into an injective ∗-homomorphism, while an orthogonal pro-
jection, into a state preserving conditional expectation or equivalently, a norm-one
projection [63]. This is the generalisation of the the classical notion from proba-
bility theory. Note that in contrast to the usual conditional expectation, a state
preserving norm-one projection between two von Neumann algebras does not
always exist [60].
We investigate three possible functors: Γt,Γ∞t and ∆t. In all cases we need to
assume that the fields are selfadjoint operators. With this in mind, we prove in
proposition 5.10 that if the function t is multiplicative, i.e. its value on a pair
partition is equal to the product of the values on its connected components, then
the fields are essentially selfadjoint operators. Let us define after Kümmerer [42],
a functor of white noise as functor from (real) Hilbert spaces to probability spaces
which map the zero dimensional Hilbert space {0} into the algebra C. We want
to construct such functors using the framework of generalised Brownian motion,
loosely speaking, the algebras must be ‘build out of fields’. To distinguish from
the previous concept we call this functor of second quantisation. We then show in
lemma 5.8 that multiplicativity of the function t is a necessary condition in order
to construct functors of second quantisation. However we identify three possible
choices defined on page 81, which must be analyzed separately. The most obvious
one is the algebra Γt(K) generated by the Gaussian process {ωt(f)}f∈K acting
on Ft(KC). This is the case of the q-second quantisation functor from [9] and in
particular the bosonic, fermionic and free functors. However in general this is not
the best definition, but one should consider an algebra acting on Ft(KC⊕ <2(Z))
where the <2(Z) ‘modes’ are only passive. The two possibilities are:

1) Γ∞t (K) is the von Neumann sub-algebra of Γt(K ⊕ <2R(Z)) of operators
commuting with Ft(1⊕O) for all O ∈ O(<2R(Z));

2) ∆t(K) is the von Neumann generated by the Wick products Ψ(V , f) with
Im f ⊂ K acting on Ft(K ⊕ <2(Z)). We consider here only the case of bounded
Wick operators.

The first result is that ∆t is a functor of second quantisation. The Wick
products have the desired behavior under second quantisation morphisms

∆t(T ) : Ψ(V , f) �→ Ψ(V , T ◦ f),

for any contraction T between real Hilbert spaces. For Γ∞t we prove that it is
also functor from Hilbert spaces to probability spaces but Γ∞t ({0}) = C if and
only if the vacuum state ρt is faithful for Γt(<2R(Z)) (see theorem 5.16). In this
case the two coincide if the fields are bounded (see corollary 5.17).

The last section of chapter III deals with a concrete example of tracial positive
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definite function on pair partitions which has been found in [13] and rediscovered
in chapter II:

tq(V) = (−1)cr(V)|q||V|−B(V),
with −1 < q ≤ 0. The field operators are in this case bounded. The aim of the
investigation is to show that the von Neumann algebra Γtq (K) is a type II1 factor
for infinite dimensional spaces K. The developed technique is inspired from [9]
and can be applied to any function t for which the state ρt is faithful. We define
the map

Φ : X �→ w−lim
n→∞

ω(en)Xω(en)

which is a completely positive trace preserving contraction on Γt(K). At the
Hilbert space level we have the contraction Θ which has a transparent action
on Wick product vectors. Let {P, F} be a partition of the set {1, . . . , n} and
V ∈ P2(P ), f : F → K. Then

Θ : Ψ(V , f)Ωt �→ Ψ(V , f)Ωt,

where V = V∪{(0, n+1)} adds to V one pair which ‘embraces’ the whole ordered
set {1, . . . , n}. This contraction has a counterpart θ on the space V = ⊕∞n=0Vn.
By lemma 6.2, the operator θ is selfadjoint if the state ρt is tracial. If θ has no
eigenvector with eigenvalue 1 other than ξ ∈ V0 = C, then θn → Pξ as n → ∞
and in consequence Φn(X)→ ρt(X)1 which implies that ρt is the only trace on
Γt(K).
In the case of the function tq the map θ has eigenvalues in the set {0, q,−q} on
V & V0. This implies that Γtq is a factor of type II1.

Chapter IV deals with a class of positive definite functions on pair partitions
tα,β which extend in a natural way the characters φα,β of the infinite symmetric
group S(∞).

The symmetric group S(n) embeds in the set of pair partitions over the or-
dered set {1, . . . , 2n} by

S(n) ' τ �→ Vτ := {(i, 2n+ 1− τ(i)) : i = 1, . . . , n} ∈ P2(2n).

The restriction to the symmetric group of a positive definite function t is pos-
itive definite, as function on the group [13]. For multiplicative functions t, the
restriction to the symmetric group is itself multiplicative for permutations whose
supports lie in disjoint segments on the ordered set {1, 2, . . .}. The converse is
still an open question: can a multiplicative positive definite function on the sym-
metric group be extended in a natural way to the pair partitions P2(∞) ?
The characters of the infinite symmetric group are indecomposable positive defi-
nite central functions on the group. The theorem of Thoma [62] gives the concrete
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expression of all the characters:

φα,β(σ) =
∏
m≥2

( ∞∑
i=1

αmi + (−1)m+1
∞∑
i=1

βmi

)ρm(σ)

,

where α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,
∑
αi +

∑
βi ≤ 1, and ρm(σ) is the

number of cycles of length m in the permutation σ.

The GNS-representation with respect to φα,β has been described by Veršik
and Kerov in [64] by giving a probabilistic interpretation to the coefficients αi, βi.
We use their construction to define the spaces Vn and the maps jn. The details
can be found on page 101. In the simpler case when

∑
i αi = 1 we consider

V
(α)
n = <2(X̃n, m̃n) where X̃n is the space of pairs (x, y) such that x, y ∈ Nn and
x = σy for some permutation σ ∈ S(n) action on the Nn. The measure m̃n is αn

for the x coordinate and counting measure over the y coordinate for a given x.
We see α as measure over N := {1, 2, . . .}. On X̃n the permutation group acts
on the first coordinate, and produces the unitary representation

(U (α)
n (σ)h)(x, y) = h(σ−1x, y).

We fix the unit vector 1n, the indicator function of the diagonal {(x, x) | x ∈
Xn} ⊂ X̃n. This gives the positive definite function φα(σ) and the isome-
try jn : Vn → Vn+1 given by (jnh)(x, y) = δxn+1,yn+1h(x(n), y(n))) where x =
(x1, . . . , xn, xn+1) = (x(n), xn+1). We obtain thus a representation of the
∗-semigroup BP2(∞) on

⊕∞
n=0 V

(α)
n . A similar construction can be made in the

general case. We denote by tα,β the corresponding positive definite function on
pair partitions. Its expression is similar to that of φα,β :

tα,β(V) =
∏
m≥2

( ∞∑
i=1

αmi + (−1)m+1
∞∑
i=1

βmi

)ρm(V)
.

Definition.Let V ∈ P2(2n). There exists a unique non-crossing pair partitions
V̂ ∈ P2(2n) such that the set of left points of the pairs in V and V̂ coincide. A
cycle in V is a sequence ((l1, r1), . . . , (lm, rm)) of pairs of V such that the pairs
(l1, r2), (l2, r3), . . . , (lm, r1) belong to V̂ . The length of this cycle ism. We denote
by ρm(V) the number of cycles of length m in the pair partition V .

In particular tα,β is multiplicative and thus the fields ωα,β are selfadjoint,
so we can define the von Neumann algebra Γα,β(K) generated by the Gaussian
process {ωα,β(f)}f∈K on Fα,β(KC). We prove that with the exception of the
cases α1 = 1 (bosonic), β1 = 1 (fermionic), and αi = βi = 0 (free), there is
no tracial normal state on Γα,β(<2R(Z)) and the vacuum state ρα,β is not faithful
(lemma 4.3 and lemma 4.4).
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The last section of chapter IV concentrates on the special case in which the
function on pair partitions is tN (V) = (

1
N

)|V|−c(V), with N ∈ Z \ {0} and c(V)
the number of cycles of V . This arises from the choice α1 = . . . , αN = 1

N for
positive N and β1 = . . . , β|N | = 1

|N | for negative N . The following ‘commutation
relations’ are found

aN (f)a∗N (g) = 〈f, g〉1+
1
N

dΓ(Tf,g),

where Tf,g is the finite rank operator defined by Tf,gh := 〈f, h〉 g, and dΓ(A) is
a differential second quantisation operator for A bounded operator on the one
particle space. In the case N < 0 this leads to the exclusion principle which says
in physical language that at most |N | particles can be in the same one-particle
state. However we do not know if this algebra has any relevance in physics.

The fact that the vacuum state is not faithful, can have drastic consequences for
the algebra of fields: for infinite dimensional real Hilbert spaces K and negative
N , the von Neumann algebra ΓN (K) is the whole algebra of bounded operators
on FN (KC). This is proved in proposition 5.3, by showing that the number
operators Ni which count the particles in state ei ∈ K, belong to the algebra
ΓN(K) and thus also the projection on the cyclic vacuum vector.

In the last part of the chapter we analyze the functors of white noise ∆N

(for negative N) generated by the generalised Wick products Ψ(V , f) acting on
FN(KC⊕<2(Z)) for which Im(f) ⊂ K. For finite dimensional K, the von Neumann
algebra ∆N (K) is finite dimensional. In particular in the one dimensional case
∆N (R) =

⊕N+1
p=2 Mp(C) which is non-commutative, in contrast with the known

tracial cases of functors of white noise. This result is proved in theorem 5.8. For
infinite dimensional K, ∆N (K) is a discrete sum of type I∞ factors, according to
theorem 5.7.

Chapter V answers affirmatively the following question: does there exist a q-
product of two generalised Brownian motions ?

As it was mentioned already, the no-go theorem of Speicher [57] shows that
only the free and tensor products of probability spaces are ‘universal’. The gen-
eralised Brownian motions are defined in terms of pairings for which there is a
clear notion of ‘crossings’. This allows the definition of q-product of Brownian
motions by inserting a factor of the type ‘qcr’ in the joint distributions. More
precisely, let {ta}a∈I be a family of multiplicative positive definite functions. On
the free product of algebras of fields Aa(K) indexed by elements of a ∈ I we
define the functional

( ∗
a∈I

(q)ρta)

(
n∏
i=1

ωc(i)(fi)

)
=
∑
V
qcr(V,c)

∏
a∈I

ta(Va)
∏

(i,j)∈V
〈fi, fj〉 ,
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where the sum is taken over those pair partitions V such that if (i, j) ∈ V then
c(i) = c(j) ∈ I, which we call the ‘color’ of the pair (i, j), the pair partition Va
is the subset of pairs in V which are colored in the color a, and the coefficient
cr(V , c) counts the number of crossings between pairs of different colors. We call
this functional the q-product of {ρta}a∈I . Its positivity is again determined by
a ∗-semigroup BPI2 (∞) of I-indexed broken pair partitions which is similar to
the ‘mono-color’ one except that the pairs and legs get an index of their own and
the legs join according to their index (see definition 2.2). The q-product of the
functions {ta}a∈I is defined by:

( ∗
a∈I

(q) ta)((V , c)) := qcr(V,c)
∏
a∈I

ta(c−1(a)).

where (V , c) is an element of PI2 (∞) with c : V → I. This extends to the whole
semigroup BPI2 (∞) by taking the value zero on diagrams with legs. The repre-
sentation space of the ∗-semigroup is the direct sum of the spaces Vn constructed
from the kernels

kn(d1,d2) = ( ∗
a∈I

(q) ta)(d∗1 · d2),

over all n : I → N such that
∑

a n(a) < ∞. The diagrams di have n(a) left
legs indexed by a ∈ I and no right legs. Each of these kernels is a product of 3
positive kernels:

1)
∏

a∈I ta((d∗1 · d2)a) is positive because all ta are positive;

2) qcr(d1)+cr(d2) counts the number of crossings inside each of the diagrams,
and it is obviously positive;

3) qcr(d1,d2) is the number of crossings which appear ‘when taking the product’
of d∗1 and d2 by joining the legs of the same index which point to each other in
the two diagrams. The positivity of this kernel is essentially equivalent to the
existence of the vacuum representation for an algebras generated by the operators
ab,i with i = 1, . . . ,n(b), and satisfying the commutation relations

ab,ia
∗
c,j − qa,b a∗c,jab,i = δa,bδi,j1,

with qa,b = 1 if a = b and qa,b = q if a �= b. Such representations have been
studied in [12] and also in [33, 34, 55].

We define the operators ja : Vn → Vn+δa which have the right intertwining
relations with respect to the unitary representations Un of S(n) := Xa∈IS(n(a)).
This gives the representation of BPI2 (∞) on

⊕
n Vn. The creation and annihila-

tion operators are defined on the Fock-like space

Ft(H) :=
⊕
n

1
n!
Vn ⊗s

⊗
a∈I

H⊗n(a)

with similar notations and definitions as in the usual case.
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Some easy consequences of the construction are enumerated below:

1) the vacuum state ∗(q)a∈Iρta on the field algebra generated by the selfadjoint
operators {ωa(f)}a∈I,f∈K is tracial if and only if all ρta are tracial.
2) the q-product of two functions t1, t2 produces the positive definite function
t1 ∗(q) t2 whose restriction on the algebra generated by sums ω1(f) + ω2(f) has
the form

(t1 ∗(q) t2)(r)(V) =
∑

V1∪V2=V
qcr(V1,V2)t1(V1)t2(V2).

3) the central limit theorem 3.6 states that the properly normalized sums of ‘q-
independent’ fields having the same distribution ρt converges in law to the field
ω = a+ a∗ in the algebra of q-commutation relations a(f)a∗(g) − qa∗(g)a(f) =
〈f, g〉1.
4) the q-product interpolated between graded tensor product (q = −1), reduced
free product (q = 0) and tensor product (q = 1) of the given Brownian motions.

7 Open problems

With regard to chapter II one would like to know if it is possible to make a
stronger connection between combinatorial tools such as the generating series of
the species of structures, and the algebra of creation and annihilation operators.

Chapter III leaves the following questions unanswered:
1) how can one characterize the faithfulness of the state ρt directly in terms

of the ∗-semigroup BP2(∞) ?
2) do there exist faithful states ρt which are non-tracial ?
3) can the functor ∆t be defined for unbounded field operators ? (we suspect

that the answer is positive)

4) can a positive definite multiplicative function on the infinite symmetric
group be extended to the ∗-semigroup BP2(∞) in a natural way ?

The analysis of the algebras ∆N made in chapter IV shows that if the vacuum
state is not faithful then the von Neumann algebra of the fields can contain all
bounded operators, and we have type I von Neumann algebras. It would be
interesting to see if this is the case in general.

The q-product for generalised Brownian motions defined in chapter V points in
the direction of a q-product of algebras with additional ‘pairing’ structure. Can
this be formulated precisely ?

Finally, the quasi-free representations, the stochastic integration and Lévy pro-
cesses have not been investigated. In this direction we mention the work of
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Anshelevich on Lévy processes on q-deformed Fock spaces [2].
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Symmetric Hilbert spaces

arising from species of structures 1

Mădălin Guţă Hans Maassen

Mathematisch Instituut, Katholieke Universiteit Nijmegen
Toernooiveld 1, 6526 ED Nijmegen, The Netherlands

ABSTRACT

Symmetric Hilbert spaces such as the bosonic and the fermionic Fock spaces over
some ‘one particle space’ K are formed by certain symmetrization procedures
performed on the full Fock space. We investigate alternative ways of symmetriza-
tion by building on Joyal’s notion of a combinatorial species. Any such species
F gives rise to an endofunctor FF of the category of Hilbert spaces with con-
tractions mapping a Hilbert space K to a symmetric Hilbert space FF (K) with
the same symmetry as the species F . A general framework for annihilation and
creation operators on these spaces is developed, and compared to the generalised
Brownian motions of R. Speicher and M. Bożejko. As a corollary we find that
the commutation relation aia∗j − a∗jai = f(N)δij with Na∗i − a∗iN = a∗i admits
a realization on a symmetric Hilbert space whenever f has a power series with
infinite radius of convergence and positive coefficients.

1This chapter is based on reference [28].
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1 Introduction

Symmetric Hilbert spaces play a role in physics as the state spaces of many
particle systems. The type of particle dictates the type of symmetrization: bosons
require complete symmetrization and fermions complete antisymmetrization.
More general ways of symmetrization, although apparently not realized in nature,
have been studied for their own sake: parastatistics [49] and interpolations by a
parameter q ∈ [−1, 1] between the above two cases [26, 21, 67, 10, 45].
All these constructions lead to quantum fields or generalized Brownian motions,
each with their own generalized Gauss distributions [9, 13, 10, 11, 45]. One
particularly important case is q = 0: the free Brownian motion, exhibiting the
Wigner distribution. This case is related to free independence in the same way
as the case q = 1 of complete symmetrization is related to ordinary commutative
independence.
Although there are results [57] indicating that these two are the only notions of
independence, more relaxed conditions such as the weak factorization property
[42], or pyramidal independence [13] are satisfied in a variety of examples.
In this paper we study combinatorial ways of symmetrization. Our starting point
is the following observation. The category E of finite sets has as its isomorphy
classes the natural numbers N, and for each object U in class n ∈ N there are n!
symmetries. This leads to the Fock space

l2
(

N,
1
n!

)
=: FE(C).

Taking for an annihilation operator a the left shift on this space, we find that
the field operator X := a+ a∗ has distribution given by ([53])

〈δ∅, Xnδ∅〉 = 1√
2π

∫ ∞

−∞
xne−

1
2x

2
dx.

On the other hand, if we consider the category L of finite sequences (or linear
orderings on a set), we obtain

FL(C) = l2(N)

and, since a∗ is now the right shift [65],

〈δ∅, Xnδ∅〉 = 1
π

∫ 2

−2
xn
√
4− x2 dx .

We conclude that the Gauss and Wigner distributions are produced by the con-
cepts of ‘set’ and ‘sequence’. Our program in this paper is to generalize the Fock
space construction to such combinatorial concepts as ‘tree’, ‘graph’ and ‘cycle’.
The proper framework for this undertaking turns out to be Joyal’s notion of a
combinatorial species of structures [35]. These are defined as functors from the
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category of finite sets with bijections to the category of finite sets with maps.
Combinatorial species of structures can be viewed as coefficients of the Taylor
expansion of analytic functors [36] and lead to Joyal’s notion of a tensorial species,
very close to the our FF (K). This circle of ideas is introduced in Sections 2 and
3.
A natural way to introduce an annihilation operator into this context is via the
operation of removal of a point from a structure, which is called differentiation
F �→ F ′ by Joyal. We thus arrive at operators

a(k) : FF (K)→ FF ′(K), a∗(k) : FF ′(K)→ FF (K), (k ∈ K)

However, these operators can only be added, in order to yield field operators, if
the species F and F ′ are the same. This holds in two cases: the species E of sets
and the species E± of oriented sets, related to the Bose and Fermi symmetries.
Natural as this may be, we cannot move any further if we do not modify the
operation of removal of a point in some way.
Now in fact, already in the case of sequences it is required that the last point is
removed. In the same way, we may require in the case of trees that only leaves
may be picked off (points that leave the tree connected when removed). In the
case of cycles we may require that the chain, coming from a broken, cycle must
be connected up again. All of this leads to the study of suitable transformations
between F and F ′, which are the subject of Section 4.
Our approach to symmetric Hilbert spaces and field operators provides a tool for
creating new examples, and is particularly transparent due to the use of combina-
torial objects which are easy to visualize. The two examples of ‘q-deformations’
appearing in [13] and [10] are cast in the form of combinatorial Fock spaces for
the species of ballots and the species of simple directed graphs respectively. In
section 5 we point out the connection between this combinatorial approach and
the one based on positive definite functions on pair partitions [13]. We describe
how the operations between species can be extended to the weights, illustrating
this by examples.

2 Species of Structures

This section is a brief introduction to the combinatorial theory of species of
structures [5, 35], insofar as is needed here.
We are concerned with the different kinds — or ‘species’ — of structures that
can be imposed on a set U . The basic idea is that such a species is characterized
by the way it transforms under permutations of the set U .
It will be convenient to consequently adhere to von Neumann’s construction of
the natural numbers according to which 0 = ∅ and n+ 1 = n ∪ {n}, so that the
number n coincides with the set {0, 1, 2, . . . , n− 1}.
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Definition.[5] A species of structures is a rule F which
(i) produces for each finite set U a finite set F [U ],
(ii) produces for each bijection σ : U → V a function F [σ] : F [U ]→ F [V ]. The
function F [σ] should have the following functorial properties:
(a) for all bijections σ : U → V , τ : V →W , we have F [τ ◦ σ] = F [τ ] ◦ F [σ],
(b) for the identity map IdU : U → U , F [IdU ] = IdF [U ].
The elements of F [U ] are called F -structures on U and the function F [σ] describes
the transport of F -structures along σ. Note that F [σ] is a bijection by the
functorial property of F .
We denote by Hs the stabilizer {σ ∈ S(U) : F [σ](s) = s} of the structure
s ∈ F [U ].
Examples. 1. The species E of sets is given by

E[U ] = {U}.
E[σ] : U �→ V if σ : U → V.

Thus the only E-structure over U is the set U itself. The stabilizer of this
structure coincides with the whole permutation group Hs = S(U).

2. The species L of linear orderings:

L[U ] = {f : |U | → U ; f bijective}

where |U | = {0, 1, 2, . . . , |U |−1} is the cardinality of U . The transport along the
bijection σ : U → V is given by

L[σ](f) = σ ◦ f.

The stabilizer of each linear ordering is trivial. The cardinality of the set of
structures L[U ] is equal to that of the permutation group S(U).

3. The species C of cyclic permutations:

C[U ] = {π ∈ SU | πk(u) �= u for all u ∈ U, k < |U |};
C[σ] : π �→ σ ◦ π ◦ σ−1 .

Each structure π ∈ C[U ] has a nontrivial stabilizer Hπ = {πk | k < |U |}, the
number of structures is

|C[U ]| = |U |!
|Hσ| = (|U | − 1)!

Definition.A species of structures F is called molecular if the permutation group
acts transitively on its structures. A molecular species can be characterized by
the conjugacy class of the stabilizer of any of its structures. Indeed for s, t ∈ F [U ]
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and s = F [σ](t) we haveHs = σ◦Ht◦σ−1. By a well-known combinatorial lemma
we have for each structure s:

|F [U ]| · |Hs| = |U |! for s ∈ F [U ]
In general a species of structure may not be molecular, in which case it is a sum
of species:
Definition.Let F, G be species of structures. Then their sum F + G is the
species defined by the disjoint union

(F +G)[U ] = F [U ] ∪G[U ],
and the transport along the bijection σ : U → V is given by:

(F +G)[σ](s) =
{
F [σ](s) if s ∈ F [U ]
G[σ](s) if s ∈ G[U ]

The canonical decomposition of a species F is its decomposition as a sum F =
F0 + F1 + F2 + · · · where Fn denotes the n− th level of F :

Fn[U ] =
{
F [U ] if |U | = n
∅ if |U | �= n

The simplest species having structures at only one level is the species of singletons
X :

X [U ] =
{ {U} if |U | = 1
∅ otherwise

Besides addition, there is a number of other operations between species by which
to construct new species out of simpler ones. Following a standard notation [5],
we use the sum symbol to denote disjoint reunion.
Definition.Let F, G be two species of structures. We define the product species
F ·G as:

(F ·G)[U ] =
∑

(U1,U2)

F [U1]×G[U2]

where the sum runs over all partitions of the set U into disjoint parts U1 and
U2. The transport along the bijection σ : U → V of the structure s = (f, g) ∈
(F ·G)[U ] is:

(F ·G)[σ](s) = (F [σ1](f), G[σ2](g))

where f ∈ F [U1] , g ∈ G[U2] and σ1, σ2 are the restrictions of σ to the sets U1
and U2 respectively.
The stabilizer of s = (f, g) is H(f,g) = Hf ·Hg ⊂ S(U1) · S(U2) ⊂ S(U1 + U2).
As an example let us consider the n-th power of the species X of singletons:

Xn[U ] =
{ {(u1, .., un)|ui ∈ U, ui �= uj for i �= j} if |U | = n
∅ otherwise
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It is clear that the species Xn and Ln are essentially the same. Indeed there
exists a natural bijection between Xn[U ] and Ln[U ]:

(u1, .., un) �→
(
u : n→ U : i �→ ui

)
.

Remark. In the language of category theory, a species of structures F is a
functor from the category B of finite sets with bijections to the category E of
finite sets with functions.

Definition.A morphism from the species of structures F to the species G is a
natural transformation of functors, that is a family of functions mU : F [U ] →
G[U ] such that:

G[σ] ◦mU = mV ◦ F [σ] for all σ : U → V.

An isomorphism is an invertible morphism.

Definition.The cartesian product F ×G of two species of structures F and G is
given by:

(F ×G)[U ] = F [U ]×G[U ] (2.1)
(F ×G)[σ](f, g) = (F [σ](f), G[σ](g))

The canonical decomposition of the cartesian product is:

F ×G =
∞∑
n=0

Fn ×Gn. (2.2)

A structure (f, g) ∈ (F ×G)[U ] has the stabilizer H(f,g) = Hf ∩Hg ⊂ S(U).

An operation which will play an important role later is the derivation.

Definition.The derivative F ′ of a species F is a species whose set of structures
over a finite set U is given by:

F ′[U ] = F [U ∪ {U}]

and F ′[σ](s) = F [σ+](s) where σ+ : U ∪ {U} → V ∪ {V } is the extension of
σ : U → V :

σ+(x) =
{
σ(x) if x ∈ U ,
V if x = U .

Remark. The term {U} in U ∪ {U} is just any additional point, not belonging
to U . In particular for U = n we have U ∪ {U} = n+ 1. If no confusion arises,
we may write U ∪ {U} as U + {∗}. The transport along bijections is the one
inherited from the species F but it is restricted to those transformations that
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keep the point ∗ fixed. The stabilizer of a structure s when considered as a
F ′−structure is different from its stabilizer as a F−structure:

s ∈ F ′[U ] = F [U + {∗}] ⇒ HF ′
s = HF

s ∩ S(U).

As explained in the introduction, we wish to compare successive levels of a species,
i.e. to compare F with F ′. In this direction there is a small

Lemma 2.1 There are only two species (up to multiplicity) which satisfy F =
F ′.

Proof. Clearly, the species F must have the same number of structures at all
levels. For s ∈ F [n], the stabilizer Hs satisfies |Hs| ≥ n!

|F [n]| which for n big
enough, reduces the possibilities to either the whole symmetric group S(n) or the
subgroup A(n) of even permutations. In the first case we obtain the species E of
sets which has only one structure at each level, in the second we have the species
E± of oriented sets with exactly two structures at each level

E±[U ] = {U+, U−}
the stabilizer of each structure being HU± = A(U).

Besides these two ideal cases, we are interested in species F whose structure at
successive levels ‘resemble’ each other. That means that Fn[U ] and Fn+1[U +
{∗}] should contain structures that behave similarly under permutations of U .
Suppose that we are given a morphism m from a subspecies F1 of F ′ to F (F ′ =
F1 + F2). Then the F -structures which belong to the image of this morphism
are similar to their preimages in the sense that their stabilizers contain those of
their preimages. The action of the morphism m can be encoded in a weight on
the species F × F ′.
Definition.A weighted species (F, j) consists of

1. a species of structures F

2. a family of functions jU : F [U ]→ C called weights,

such that for a bijection σ : U → V one has jV ◦ F [σ] = jU .
The weight jm associated to the morphism m : F1 → F is the indicator function
of its graph:

jm,U (f, g) =
{
δf,m(g) if g ∈ F1[U ] , f ∈ F [U ],
0 if g /∈ F1[U ].

One of the most interesting operations between species is the composition.

Definition.Let F and G two species of structures such that G[∅] = ∅. The
composition F ◦ G is a species whose structures on a set U are made in the
following way:
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1. make a partition π of the set U ;

2. choose an F -structure over the set π: f ∈ F [π];
3. for each p ∈ π choose a structure gp ∈ G[p]. Then the triple (π, f, (gp)p∈π)

is a structure in F ◦ G[U ]. The transport along σ : U → V is the natural
one.

In brief, an F ◦ G structure is an F -assembly of G-structures. As an example
consider the following combinatorial equation.

A = X · E(A) (2.3)

This equation implicitly defines the species A of rooted trees. Here is an explicit
definition:

A[U ] = {f : U → U | ∀u∈U : f◦k(u) is eventually constant};
A[σ] : f �→ σ ◦ f ◦ σ−1.

The constant is the root of the tree. The preimage of the root consists of roots
of subtrees. One can thus consider the tree f as the pair (root(f) , {fa | a ∈
f−1(root(f))}) with fa ∈ A[Ua] the subtree of f with root a:

Ua = {u ∈ U | ∃k ∈ N such that f◦k = a} , fa = f �Ua

We finally note
U = {root(f)} ∪

⋃
a∈f−1(root(f))

Ua

thus completing the bijection between A[U ] and X · E(A)[U ].

3 Fock Spaces and Analytic Functors

In this section we will describe how one can associate to a species of structures
an endofunctor of the category of Hilbert spaces with contractions. We call the
images of this functor symmetric spaces associated to the species F and as we
shall see in the following sections, they are suitable for constructing algebras of
creation and annihilation operators, by exploiting the symmetry properties of the
species F .
Following Joyal [36] we define a special class of endofunctors of the category of
sets with maps.
Definition.Let F [·] be a species of structures. The analytic functor F (·) is an
endofunctor of the category Set of sets with maps, defined by:

F (J) =
∑̃
U

F [U ]× JU (3.1)
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where JU = {c|c : U → J} and the symbol
∑̃

U means the set of equivalence
classes under bijective transformations:

F [U ]× JU ' (s, c) �→ (F [σ](s), c ◦ σ−1) ∈ F [V ]× JV

for σ : U → V . We call the elements of J ‘colors’. Thus, an element in F (J) is
an orbit of J-colored F-structures denoted by [s, c]. Alternatively

F (J) =
∑̃
U

F [U ]× JU =
∞∑
n=0

F [n]× Jn / S(n).

Remark. This relation can be viewed as a Taylor expansion of the set F (J),
which explains the name ‘analytic functor’ for F (·) [36].
Parallel to the functor F (·) we define another endofunctor, this time on the
category Hilb of Hilbert spaces with contractions. For any Hilbert space H and
a finite set U we denote by H⊗U the Hilbert space arising from the positive
definite kernel on HU given by

k

(⊗
u∈U

ψu,
⊗
u′∈U

ϕu′

)
=
∏
u∈U

〈ψu, ϕu〉 .

For every bijection σ : U → V there is a unitary transformation U(σ) : H⊗U →
H⊗V obtained by linear extension of:

U(σ) :
⊗
u∈U

ψu →
⊗
v∈V

ψσ−1(v).

Definition.Let F be a species of structures. For each Hilbert space K we con-
struct the symmetric Hilbert space

FF (K) :=
∞⊕
n=0

1
n!
<2sym(F [n]→ K⊗n) (3.2)

where the subscript ‘sym’ denotes the invariance under the natural action of the
symmetric group S(n):

Ψ �→ U(σ)Ψ ◦ F [σ−1].
The factor 1

n! refers to the inner product on <2sym.

Remark. There is an equivalent way of writing FF (K):

FF (K) =
∞⊕
n=0

1
n!
<2(F [n])⊗S(n) K⊗n (3.3)
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where ⊗S(n) means that we consider only the subspace of the tensor product
whose vectors are invariant under the action of S(n). If T is a contraction on K
then FF (T ) is defined by:

(FF (T )Ψ)(s) = (T ⊗ T ⊗ · · · ⊗ T︸ ︷︷ ︸
n times

)(Ψ(s)). (3.4)

for s ∈ F [n]. Note that FF (T ) is a well defined contraction on FF (K) and
FF (T1) · FF (T2) = FF (T1T2), thus FF is a functor from the category of Hilbert
spaces with contractions to itself.

Let us choose an orthonormal basis (ej)j∈J for the Hilbert space K. Let (ec)c∈Jn

be the basis of K⊗n given by ec := ⊗j∈nec(j), and

γF,J : F (J) → [0,∞)
γF,J([s, c]) = |H(s,c)|

where [s, c] denotes the orbit of the colored structure (s, c).

Lemma 3.1 There is a unitary equivalence between <2(F (J), γF,J ) and FF (K),
given by

Uδ[s,c] = δs ⊗S(n) ec :=
∑

σ∈S(n)
δF [σ](s) ⊗ ec◦σ−1

Proof. Considering K⊗n as <2(Jn) we may write

Uδ[s,c] =
∑

σ∈S(n)
δF [σ](s) ⊗ ec◦σ−1

=
∑

σ∈S(n)
δF [σ](s),c◦σ−1 = |H(s,c)| · 1[s,c]

It follows that

‖Uδ[s,c]‖2 =
1
n!
|H(s,c)|2 · |[s, c]| = |H(s,c)|

= ‖δ[s,c]‖2.

Since the functions 1[s,c] span the space <2symm(F [n] × Jn), the operator U is
surjective and hence unitary.

Remark. For a constant coloring c we have ‖δ[s,c]‖2 = |Hs|, whereas for all
colors different, ‖δ[s,c]‖2 = 1.

Certain operations with species of structures extend to analytic species [36] and
to the symmetric spaces: addition, multiplication and substitution.
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1) Addition. As (F +G)(J) is the disjoint union of F (J) and G(J), we have

FF+G(K) = FF (K) ⊕FG(K).

2) Multiplication. Similarly, we have

(F ·G)(J) =
∑̃
U

(
∑

U1+U2=U

F [U1]×G[U2])× JU

=
∑̃
U

∑
U1+U2=U

F [U1]×G[U2]× JU1+U2

=
∑̃
U1,U2

F [U1]×G[U2]× JU1+U2 = F (J)×G(J).

which suggests the following unitary transformation from FF ·G(K) to
FF (K) ⊗FG(K):

T : δ[(f,g),c] → δ[f,c1] ⊗ δ[g,c2]
for f ∈ F [n], g ∈ G[m], c ∈ Jm+n and c1, c2 the restrictions of c to n respectively
m. Indeed the map preserves orthogonality and is isometric:

‖δ[(f,g),c]‖2 = |H((f,g),c)| = |H(f,c1) ·H(g,c2)| = |H(f,c1)| · |H(g,c2)|
= ‖δ[f,c1]‖2 · ‖δ[g,c2]‖2

From now on we will consider FF ·G(K) and FF (K)⊗FG(K) as identical, without
mentioning the unitary T .

3) Substitution. we start with the analytic functors:

(F ◦G)(J) =
∑̃
U

(F ◦G)[U ]× JU

=
∑̃
U

(
∑̃
π

F [π]×Gπ [U ])× JU =
∑̃
π

(F [π]×
∑̃
U

Gπ [U ])× JU

=
∑̃
π

F [π]×Gπ(J) = F (G(J))

where we have used Gπ(J) = G(J)π , which follows from the multiplication prop-
erty. At the level of symmetric spaces we have the unitary transformation from
FF (FG(K)) to FF◦G(K):

T : δ[f,C] → δ[f,(ga)a∈π,c]

with the following relations for the structures appearing above: f ∈ F [π], C :
π → G(J) such that C(a) = [ga, ca], and c �a= ca. Let us check the isometric



36 II. Symmetric Hilbert spaces

property:

‖δ[f,C]‖2 =
∏
a∈π

‖δC(a)‖2 · |H(f,C)| =
∏
a∈π

‖δ[ga,ca]‖2 · |Hf,C |

=
∏
a∈π

|H(ga,ca)| · |Hf,C | = ‖δ[f,(ga)a∈π ,c]‖2

Symmetric Fock space. The symmetric Hilbert space associated to the species
of sets is the well known symmetric Fock space:

FE(K) =
∞⊕
n=0

1
n!
<2sym(E[n]→ K⊗n) =

∞⊕
n=0

1
n!
K⊗sn.

Full Fock space. For the linear orders we obtain the full Fock space:

FL(K) =
∞⊕
n=0

1
n!
<2sym(L[n]→ K⊗n) =

∞⊕
n=0

K⊗n.

Antisymmetric Fock space. We recall from lemma 2.1 that the species E±

of oriented sets has two structures at all levels

E±[U ] = {U+, U−}

which are mapped into each other by odd permutations and have as stabilizer
the group A(U) of even permutation. The representation of S(n) on <2(E±[n])
contains two one-dimensional irreducible sub-representations, the symmetric and
the antisymmetric representation. Accordingly the symmetric Hilbert space asso-
ciated to E± is the direct sum of the symmetric and antisymmetric Fock spaces:

FE±(K) = Fs(K)⊕Fa(K).

Remark. The set of species as defined in the previous section can be enlarged by
defining [5] the virtual species as equivalence classes of pair of species of structures
under the equivalence relation:

(F1, G1) ∼ (F2, G2)⇔ F1 +G2 = F2 +G1

One denotes the equivalence class of (F,G) by F −G. Thus we can say that the
antisymmetric Fock space is associated to the virtual species E± − E.

4 Creation and Annihilation Operators

In this section we will describe a general framework for constructing *-algebras
of operators on symmetric Hilbert spaces by giving the action of the generators
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of these algebras, the creation and annihilation operators. In particular in the
case of the species of sets E and linear orderings L, we obtain the well known
canonical commutation relations algebra (C.C.R.), respectively the algebra of
creation/annihilation operators on the full Fock space.
The starting point is the observation that the operation of derivation of species
of structures can be interpreted as removal of point ∗ from a structure. This
makes it possible to define operators between the symmetric Hilbert spaces of a
species of structure F and its derivative F ′.

We will consider now ‘colored’ F -structures. Let J be the set of ‘colors’ and
i ∈ J . We have the map

a∗(i) : F ′[U ]× JU → F [U + {∗}]× JU+{∗}

such that
a∗(i) : (s, c)→ (s, c+i )

where c+i : U + {∗} → J is given by:

c+i (u) =
{
c(u) if u ∈ U
i if u = ∗

As we did in section 3, we pass to the set of orbits of J-colored F -structures.
The map a∗(i) projects to a well defined map from F ′(J) to F (J):

a∗(i) : F ′[U ]× JU/S(U) → F [U + {∗}]× JU+{∗}/S(U + {∗})
a∗(i) : [s, c] → [s, c+i ]

But as F (J) determines an orthogonal basis of the space FF (K) for (ej)j∈J
orthogonal basis in K, we can extend a∗(i) by linearity to an operator

a∗(i) : FF ′(K)→ FF (K).

The adjoint of a∗(i) acts in the opposite direction:

a(i) : FF (K)→ FF ′(K).

The problem with this definition is that in general the species F and F ′ are
distinct which means that one cannot take the ‘field operators’ a∗(i) + a(i) and
only certain products of creation and annihilation operators are well defined. In
section 2 we pointed out that the ‘similarity’ of the structures of the species F
and F ′ can be encoded in a weight on the cartesian product F × F ′. Let j be
such a weight. Then jU : F [U ]×F ′[U ]→ C such that for all s ∈ F [U ], t ∈ F ′[U ]
and σ : U →W we have:

jU (s, t) = jW (F [σ](s), F ′[σ](t))
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We will use this to define creation and annihilation operators which act on the
same space FF (K). In the sequel we will refer to the pair (FF (K) , j) as combi-
natorial Fock space. In order to simplify the notation we will ignore the subscript
U in jU when no confusion can arise.

Definition.a) The annihilation operator (before symmetrization) associated to
the species F and weight j is defined by:

ã(h) :
∞⊕
n=0

1
n!
<2(F [n]→ K⊗n)→

∞⊕
n=0

1
n!
<2(F [n]→ K⊗n)

(ã(h)ϕ)(f) =
∑

g∈F [n+1]

j(f, g) · inpn(h, ϕ(g))

where f ∈ F [n] , h ∈ K and inpk(h, ·) is the operator:

inpk(h, ψ0 ⊗ ..⊗ ψn) = 〈h, ψk〉ψ0 ⊗ ..⊗ ψk−1 ⊗ ψk+1 ⊗ ..⊗ ψn
for k ∈ {0, 1, .., n}.
b) The creation operator (before symmetrization) is:

ã∗(h) :
∞⊕
n=0

1
n!
<2(F [n]→ K⊗n)→

∞⊕
n=0

1
n!
<2(F [n]→ K⊗n)

(ã∗(h)ϕ)(f) = (n+ 1) ·
∑

g∈F [n]

j(g, f) · tensn(h, ϕ(g))

where f ∈ F [n+ 1] , h ∈ K and tensk(h, ·) is the operator:

tensk(h, ψ0 ⊗ ..⊗ ψn−1) = ψ0 ⊗ ..⊗ ψk−1 ⊗ h⊗ ψk ⊗ ..⊗ ψn−1
for k ∈ {0, 1, .., n}.
Remark. In order to avoid domain problems for ã, ã∗, we will restrict to weights
which are bounded, |ω(t, s)| ≤ C for all t, s. Then

‖a(h)ψn‖ ≤ n 1
2C‖h‖‖ψn‖ ‖a∗(h)ψn‖ ≤ (n+ 1)

1
2C‖h‖‖ψn‖

for ψn ∈ <2(F [n] → K⊗n) thus a(h), a∗(h) have well defined extensions to the
domain D(N

1
2 ) (Nψn = nψn). As this will not play a major role here, we will

omit specifying the domain, usually the the vectors considered should belong to
D(N

1
2 ).

We consider now the symmetrized creation and annihilation operators which act
on the symmetric Hilbert space and which are the main object of our investiga-
tion.
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Lemma 4.1 The unsymmetrized annihilation operator ã(h) restricts to a well
defined operator a(h) on the symmetric Hilbert space FF (K):

Proof. Let ϕ ∈ FF (K). Then ϕ(F [σ](f)) = U(σ)ϕ(f) for all σ ∈ S(n),
f ∈ F [n] and

(a(h)ϕ)(F [σ](f)) =
∑
g

j(F [σ](f), g) · inpn(h, ϕ(g))

=
∑
g′

j(f, g′) · inpn(h, ϕ(F [σ̃]g′)) =
∑
g′

j(f, g′) · U(σ)inpn(h, ϕ(g′))

= U(σ)(a(h)ϕ)(f)

where σ̃ : n+ 1→ n+ 1 is given by

σ̃(i) =
{
σ(i) if i ∈ n
n if i = n

Lemma 4.2 The operator ã∗(h) is the adjoint of ã(h) on the unsymmetrized
space

⊕∞
n=0

1
n!<

2(F [n]→ K⊗n).
Proof. Let ϕ, ψ be two vectors in

⊕∞
n=0

1
n!<

2(F [n] → K⊗n) and ϕn, ψn ∈
1
n!<

2(F [n]→ K⊗n) their components on level n.
Then we have:

〈ψ, ã∗(h)ϕ〉 =
∞∑
n=0

1
(n+ 1)!

∑
g

(n+ 1) 〈ψn+1(g), (ã∗(h)ϕn)(g)〉

=
∞∑
n=0

1
n!

∑
f,g

〈
ψn+1(g), j(f, g) · ϕn(f)⊗ h

〉

=
∞∑
n=0

1
n!

∑
f,g

〈j(f, g) · inpn(h, ψn+1(g)), ϕn(f)〉

=
∞∑
n=0

1
n!

∑
f

〈(ã(h)ψn+1)(f), ϕn(f)〉 = 〈ã(h)ψ, ϕ〉

We will restrict our attention to the action of the creation and annihilation
operators on the symmetric Hilbert space FF (K). From Lemma 4.1 the annihila-
tion operator a(h) is well defined on FF (K). We call its adjoint on the symmetric
Hilbert space, the symmetrized creation operator. If P is the projection to FF (K)
then the symmetrized creation operator is:

a∗(h)ϕ = P ã∗(h)ϕ for ϕ ∈ FF (K)
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Lemma 4.3 Let f ∈ F [n+ 1] and τn,k ∈ S(n+ 1) the transposition of n and k.
Then for any ϕ ∈ FF (K) the action of the symmetrized creation operator has the
expression:

(a∗(h)ϕ)(f) =
n∑

k=0

∑
g

j(g, F [τn,k](f)) · U(τn,k)(ϕ(g) ⊗ h).

Proof. We have:

(P ã∗(h)ϕ)(f) =
1

(n+ 1)!

∑
σ∈S(n+1)

U(σ)(ã∗(h)ϕ)(F [σ−1]f)

=
1
n!

∑
σ∈S(n+1)

∑
g

j(g, F [σ](f)) · U(σ−1)(ϕ(g)⊗ h) (4.1)

If σ ∈ S(n + 1) and σ−1(n) = k then ρ = τn,k ◦ σ−1 ∈ S(n). Thus the sum
over all permutations can be split into a sum over k ∈ n+ 1 and one over S(n).
Moreover, from the definitions of FF (K) and that of a weight we know that

U(ρ)ϕ(g) = ϕ(F [ρ](g))
j(g, F [ρ−1 ◦ τn,k](f)) = j(F [ρ](g), F [τn,k](f))

which substituted into the sum (4.1) gives:

1
n!

n∑
k=0

∑
ρ∈S(n)

∑
g

j(F [ρ](g), F [τn,k](f)) · U(τn,k)(ϕ(F [ρ](g)) ⊗ h)

=
n∑

k=0

∑
g′

j(g′, F [τn,k](f)) · U(τn,k)(ϕ(g′)⊗ h).

Sometimes algebras are defined by giving relations among generators as for ex-
ample commutation relations. We will give next explicit formulas for the product
of a creation and an annihilation operator.

Lemma 4.4 Let f ∈ F [n] and ϕ ∈ FF (K). Then

(a∗(h1)a(h2)ϕ)(f) =
n−1∑
k=0

∑
f ′

(j · j)k(f, f ′) · tensk(h1, inpk(h2, ϕ(f
′))) (4.2)

where we have made the notation

(j · j)k(f, f ′) =
∑
g

j(g, F [τn−1,k](f))j(g, F [τn−1,k](f ′)) (4.3)
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Proof. By applying successively the definitions of a∗(h1) and a(h2) we have:

(a∗(h1)a(h2)ϕ)(f) =

=
n−1∑
k=0

∑
g

j(g, F [τn−1,k](f)) · U(τn−1,k)(a(h2)ϕ)(g) ⊗ h1

=
n−1∑
k=0

∑
g,f ′

j(g, F [τn−1,k](f))j(g, f ′) · U(τn−1,k)(inpn−1(h2, ϕ(f ′))⊗ h1)

=
n−1∑
k=0

∑
g,f ′

j(g, F [τn−1,k](f))j(g, F [τn−1,k]f ′) · tensk(h1, inpk(h2, ϕ(f ′)))

=
n−1∑
k=0

∑
f ′

(j · j)k(f, f ′) · tensk(h1, inpk(h2, ϕ(f ′))).

Lemma 4.5 Let f ∈ F [n] and ϕ ∈ FF (K). Then:

(a(h1)a∗(h2)ϕ)(f) =
n−1∑
k=0

∑
f ′

(j · j)k(f, f ′) · tensk(h2, inpk(h1, ϕ(f ′)))

+ 〈h1, h2〉 ·
∑
f ′

(j · j)n(f, f ′)ϕ(f ′)

where we have made the notation

(j · j)k(f, f ′) =
∑
g

j(f, g)j(f ′, F [τn,k](g)) (4.4)

Proof. We use the definitions of a(h1) and a∗(h2):

(a(h1)a∗(h2)ϕ)(f) =
∑
g

j(f, g) · inpn(h1, (a∗(h2)ϕ)(g))

=
∑
g,f ′

n∑
k=0

j(f, g)j(f ′, F [τn,k](g)) · inpn(h1, U(τn,k)(ϕ(f ′)⊗ h2))

=
n−1∑
k=0

∑
f ′

(j · j)k(f, f ′) · tensk(h2, inpk(h1, ϕ(f ′)))

+ 〈h1, h2〉 ·
∑
f ′

(j · j)n(f, f ′)ϕ(f ′)
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4.1 Examples

We will describe a few known operator algebras in the language developed so far
and a new algebra based on the species A of rooted trees.

1) Sets: The combinatorial Fock space is (E, jE) with E[U ] = {U} and
j({U}, {U + {∗}}) = 1. We use lemmas 4.4 and 4.5 to calculate the commutator
of the creation and annihilation operator:

(a(h1)a∗(h2)− a∗(h2)a(h1))ϕ(f) = 〈h1, h2〉 · (j · j)n(f, f ′)ϕ(f ′)

+
n−1∑
k=0

((j · j)k(f, f ′)− (j · j)k(f, f ′)) · tensk(h2, inpk(h1, ϕ(f ′))

But (j · j)k(f, f ′) = (j · j)k(f, f ′) = (j · j)n(f, f ′) = δf,f ′ for all k ∈ n which implies
the C.C.R.:

a(h1)a∗(h2)− a∗(h2)a(h1) = 〈h1, h2〉 1
In particular it is clear that FE(K) is the symmetric Fock space over the Hilbert
space K.

2) Linear Orders: Let (L, jL) be the combinatorial Fock space with

L[U ] = {f : U → {0, 1, .., |U | − 1}}
and

jL(f, g) = δf,g�U for f ∈ L[U ], g ∈ L[U + {∗}]
where

δf,g�U =
{

1 if f(u) = g(u) for u ∈ U
0 otherwise

From (4.4) we have:

(j · j)k(f, f ′) =
∑
g

δf,g�U · δf ′,L[τn,k](g)�U
= δk,n · δf,f ′

Then by applying Lemma 4.5 we obtain

a(h1)a∗(h2) = 〈h1, h2〉1
which characterizes the algebra of creation and annihilation operators on the full
Fock space [65].

3) Oriented Sets: We refer to the previous sections for the definition of the
species E± of oriented sets. The weight jE± is given by

jE±(U+, U∗+) = jE±(U−, U∗−) = 1,
jE±(U+, U∗−) = jE±(U−, U∗+) = 0 (4.5)
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where U∗ = U + {∗}. With the help of the ‘switching’ sign operator

gϕ(±) = ϕ(∓)

we obtain the g-commutation relations:

a(h1)a∗(h2)− ga∗(h2)a(h1) = 〈h1, h2〉1 (4.6)

As we saw in the previous section, the space FE±(K) is isomorphic to the direct
sum of the symmetric and antisymmetric Fock space over K:

FE±(K) = Fs(K)⊕Fa(K)

through the transformation:

ϕs = ϕ(+) + ϕ(−) and ϕa = ϕ(+)− ϕ(−)

then the g-commutation relations can be written equivalently as:

(a(h1)a∗(h2)− a∗(h2)a(h1))ϕs = 〈h1, h2〉ϕs
and

(a(h1)a∗(h2) + a∗(h2)a(h1))ϕa = 〈h1, h2〉ϕa

4) Rooted Trees: We recall the definition of the species A:

A[U ] = {f : U → U | f◦k(u) = root(f) ∈ U for k ≥ |U |, u ∈ U}

with the transport along σ: A[σ](f) = σ ◦ f ◦ σ−1. We note that A[∅] = ∅. We
consider a natural weight which can be described as follows: it takes value 1 on
those pairs of trees for which the second is obtained by adding a leaf to the first
one, and takes value 0 for the rest. Thus for t1 ∈ A[U ] and t2 ∈ A[U + {∗}] the
weight is:

jA(t1, t2) =
{

1 if t1(u) = t2(u) for u ∈ U
0 otherwise

}
:= δt1,t2�U

We will compute the commutator of a(h2) with a∗(h1). For this we need to
obtain the expressions of (j · j)k(·, ·) and (j · j)k(·, ·). We start with

(j · j)n(f, f ′) =
∑
g

jA(f, g) · jA(f ′, g) =
∑
g

δf,g�n · δf ′,g�n

= δf,f ′
∑
g

δf,g�n = nδf,f ′ (4.7)
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The factor n appears because there are n possible way of attaching a leaf to the
tree f each one giving a tree g such that g �n= f . For k < n we have

(j · j)k(t, t′) =
∑
g

jA(t, g) · jA(t′,A[τn,k](g)) =
∑
g

δt,g�n · δt′,A[τn,k](g)�n
.

At most one term in this sum is different from zero, for the tree g satisfying:

g(i) = t(i) if i ∈ n
g(j) = t′(j) if j ∈ n \ {k}
g(n) = t′(k)

(4.8)

On the other hand

(j · j)k(t, t′) =
∑
g′

jA(g′,A[τn−1,k](t)) · jA(g′,A[τn−1,k](t′))

=
∑
g

δg′,A[τn−1,k](t)�n−1 · δg′,A[τn−1,k](t′)�n−1

= δA[τn−1,k](t)�n−1, A[τn−1,k](t′)�n−1

=
{

1 if t(i) = t′(i) for all i ∈ n, i �= k
0 otherwise (4.9)

Finally from (4.8), (4.9) we conclude that (j · j)k(t, t′) = (j · j)k(t, t′) for k ∈
{0, 1, ..n− 1}.
Let us define the ‘vertex number’ operator N by

(Nϕ)(t) = nϕ(t)

for t ∈ A[n]. The usual commutation relations between N and the creation
operator hold:

[N, a∗(h)] = a∗(h)

By using Lemmas 4.4 and 4.5 we obtain the following:

Theorem 4.6 The following commutation relations hold on the combinatorial
Fock space (A, jA):

a(h1)a∗(h2)− a∗(h2)a(h1) = N 〈h1, h2〉 (4.10)

Remark. Notice that the vacuum of FA(K) is an eigenvector of N with eigen-
value 1. For a one dimensional Hilbert space K, the cyclic space generated by
applying a, a∗ to the vacuum is a one mode interaction Fock space [1]. The vac-
uum distribution of the selfadjoint operator a+ a∗ is symmetric and is uniquely
determined by the orthogonal polynomials satisfying the relations

Pn+1(x) = xPn − 1
2
n(n+ 1)Pn−1 (4.11)
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for all n ∈ N, with P−1 = 0, P0 = 1, P1 = x. These are Meixner polynomials of
the second kind [16].

5) Simple Directed Graphs: Let us define a species whose structures are
directed graphs for which any pair of vertices is connected by at most one edge:

Ds[U ] = {g ∈ U × U | (u, v) ∈ g ⇒ (v, u) /∈ g} (4.12)

where the transport along σ is given by σ × σ.
Let g1 ∈ Ds[U ] and g2 ∈ Ds[U+{∗}]. Then j(g1, g2) �= 0 if and only if g2 contains
g1 as a subset and all edges of g2 connecting the vertex ∗ with vertices in U are
oriented from ∗ to U . We make the following convenient notation for the set of
edges going out of a vertex a of g ∈ Ds[V ] :

va(g) = {(a, v) | (a, v) ∈ g} = {a} × ea(g)
The weight jDs,q depends on the real parameter 0 ≤ q ≤ 1 and is defined by:

jDs,q(g1, g2) = δg2 , g1+v∗(g2) · (q|U|−|v∗(g2)| · (1− q)|v∗(g2)|)
1
2

In the rest of this section we prove that (Ds, jDs,q) is a realization of the q-
commutation relations ([26, 21, 67, 10, 45]).

Theorem 4.7 On (Ds, jDs,q) we have:

a(h1)a∗(h2)− q · a∗(h2)a(h1) = 〈h1, h2〉 1
Proof. We employ lemmas 4.5 and 4.4. First:

(j · j)n(f, f ′) =
∑
g

jDs,q(f, g) · jDs,q,(f ′, g)

=
∑
g

δg,f+vn(g) · δg,f ′+vn(g) · qn−|vn(g)| · (1 − q)|vn(g)|

= δf,f ′ ·
∑
vn⊂n

qn−|vn| · (1− q)|vn| = δf,f ′ (4.13)

It remains to be proved that (j · j)k(f, f ′) = q · (j · j)k(f, f ′) for
k ∈ {0, 1, ..n− 1} and f, f ′ ∈ Ds[n].
In the sum

(j · j)k(f, f ′) =
∑
g

jDs,q(f, g) · jDs,q,(f ′,Ds[τn,k](g))

the only nonzero contribution comes from g ∈ Ds[U + {∗}] such that:

g = f + {n} × en(g) = (f \ vk(f)) + vk(f) + {n} × en(g)
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and

Ds[τn,k](g) = (f \ vk(f)) + {n} × ek(f) + {k} × en(g)
= f ′ + {n} × ek(f)

which together imply

(f \ vk(f)) + {k} × en(g) = f ′.
But this means that en(g) = ek(f ′) and f \ vk(f) = f ′ \ vk(f ′). Then we have
the expression

(j · j)k(f, f ′) = δf\vk(f),f ′\vk(f ′) · qn−
|vk(f)|+|vk(f′)|

2 · (1− q) |vk(f)|+|vk(f′)|
2 (4.14)

On the other hand in (j · j)k(f, f ′) we get only the contribution from those g for
which:

g′ = Ds[τn−1,k](f) �n−1= Ds[τn−1,k](f ′) �n−1
Thus we obtain

(j · j)k(f, f ′) = δf\vk(f),f ′\vk(f ′) · qn−1−
|vk(f)|+|vk(f′)|

2 · (1− q) |vk(f)|+|vk(f′)|
2 . (4.15)

Finally from (4.14) and (4.15) we have the desired expression:

(j · j)k(f, f ′) = q · (j · j)k(f, f ′)

5 Fock States and Operations with Combinato-
rial Fock Spaces

The operations between species of structures described in Section 2 are helpful
in understanding the action of creation and annihilation operators in terms of
elementary ones. The guiding example is Green’s representation of the operators
appearing in parastatistics, as sums of bosonic (fermionic) operators with the
‘wrong’ commutation relations [25]. Similar ideas appear in [55] where the author
considers macroscopic fields as linear combinations of basic bosonic fields with
various commutation relations.

Thus, the first question we address in this section is the following: given two
combinatorial Fock spaces (F, jF ) and (G, jG), is there a natural weight associated
to the species F +G, F ·G, F ×G, F ◦G ? The second question is related to the
notion of positive definite functions on pair partitions. A general theory of such
functions has been introduced in [13] in connection with the so called generalized
Brownian motion.



5. Fock States and Operations with Combinatorial Fock Spaces 47

5.1 Fock States

We will start with the latter question by introducing the necessary definitions.

Definition.Let S be a finite ordered set. We denote by P2(S) the set of pair
partitions of S, that is V ∈ P2(S) if V = {V1, .., Vr} where each Vi is an ordered
set containing two elements Vi = (ki, li) with ki, li ∈ S, ki < li and {V1, .., Vr}
is a partition of S (Vi

⋂
Vj = ∅ for i �= j and

⋃r
i=1 Vi = S). The set of all pair

partitions is

P2(∞) =
∞⋃
r=1

P2(2r).

Let K be a Hilbert space. We denote by CK the ∗-algebra obtained from the
free algebra with generators c(f) and c∗(f), (f ∈ K) divided by the relations:

c∗(λf1 + µf2) = λc∗(f1) + µc∗(f2), λ, µ ∈ C, f1, f2 ∈ K,
and

c∗(f) = (c(f))∗.

We are interested in a particular type of positive functionals on CK, called Fock
states [13] which have the following expression on monomials of creation and
annihilation operators:

ρt(c�1(f1) · .. · c�n(fn)) =

{
0 if n odd∑
V={V1,..,Vn

2
} ρt[V1] · .. · ρt[Vn

2
] · t(V) if n even

(5.1)

the sum running over all pair partitions V in P2(2r), and the symbols Ji standing
for creation or annihilation. For V = (k, l) ∈ V

ρt[V ] = 〈fk, fl〉 ·Q(Jk, Jl)
with the 2 by 2 covariance matrix

Q =
(
ρ(cici) ρ(cic∗i )
ρ(c∗i ci) ρ(c∗i c

∗
i )

)
=
(

0 1
0 0

)
.

where ci = c(ei) and ei is an arbitrary normalized vector in K.
Let us consider a real subspace KR of K such that K = KR ⊕ iKR. The sub-
algebra of CK generated by the ‘field operators’ j(f) = c(f) + c∗(f) with f ∈ KR

is denoted by AK. If the restriction of the functional ρt to the algebra AK ⊂ CK
is a state, then we call the function

t : P2(∞)→ C.

positive definite [13]. In particular if ρt is a state on CK then t is positive definite.
The converse is not true in general. We will show first that the vacuum state of
a symmetric Hilbert space is an example of Fock state.
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Proposition 5.1 Let (F, jF ) be a combinatorial Fock space with |F [∅]| = 1. Let
ΩF be the vacuum vector of FF (K), K a Hilbert space. Then the functional
ρF (·) = 〈ΩF , ·ΩF 〉 is a Fock state on CK.

In order to prove this proposition we need to introduce one more tool.

Definition.Let K be a Hilbert space, (F, jF ) a combinatorial Fock space and
A ∈ B(K) a bounded operator on K. The second quantization of A is defined by

dΓF (A) : FF (K) → FF (K)
(dΓF (A)ϕ)(g) = dΓ(A)(ϕ(g))

where the meaning of dΓ(A) on the right side is

dΓ(A) : K⊗n → K⊗n

dΓ(A) : ψ0 ⊗ ..⊗ ψn−1 →
n−1∑
k=0

ψ0 ⊗ ..⊗Aψk ⊗ ..⊗ ψn−1

Remark. The second quantization operator is a well defined operator on FF (K).
Indeed let ϕ ∈ FF (K) and τ ∈ S(n), then

(dΓF (A)ϕ)(F [τ ](g)) = dΓ(A)ϕ(F [τ ](g))
= dΓ(A) · U(τ)ϕ(g) = U(τ)(dΓF (A)ϕ)(g)

and thus dΓF (A)ϕ ∈ FF (K). We have used the invariance of dΓ(A) under per-
mutations:

dΓ(A)U(τ) = U(τ)dΓ(A).

Lemma 5.2 We have the following commutation relations:

[a(h), dΓF (A)] = a(A∗h) (5.2)
[dΓF (A), dΓF (B)] = dΓF ([A,B]) (5.3)
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Proof. Let ϕ ∈ FF (K), f ∈ F [n], g ∈ F [n+ 1]. Then

(a(h)dΓ(A)ϕ)(f) =

=
∑
g

j(f, g) · inpn(h, (dΓ(A)ϕ)(g))

=
∑
g

j(f, g) · inpn(h,
n∑

k=0

1⊗ ..⊗A⊗ ..⊗ 1ϕ(g))

=
∑
g

j(f, g) ·
n−1∑
k=0

1⊗ ..⊗A⊗ ..⊗ 1 inpn(h, ϕ(g)) +

+
∑
g

j(f, g) · inpn(h,1⊗ ..⊗Aϕ(g)) =

=

(
n−1∑
k=0

1⊗ ..⊗A⊗ ..⊗ 1

)∑
g

j(f, g) · inpn(h, ϕ(g)) +

+
∑
g

j(f, g) · inpn(A∗h, ϕ(g)) = dΓF (A)a(h) + a(A∗h)

which proves (5.2). The other commutator follows directly from the definition of
the second quantization operator.

Lemma 5.3 Let {ej}j∈J be an orthonormal basis of K and denote a�j = a(ej)
�.

Then the following equation holds:

ai

n∏
k=1

a�k

ik
Ω =

n∑
k=1

δi,ik · δ�k,∗ · ai0
k−1∏
p=1

a
�p

ip
· a∗i0 ·

n∏
q=k+1

a
�q

iq
Ω (5.4)

where the colors (ik)k=0,..,n satisfy the property ik �= i0 for all k = 1, ..n.

Proof. For simplicity we denote Ψ =
∏n

k=1 a
�k

ik
Ω. We notice that ai0Ψ = 0 due

to the assumption that ik �= i0 for all k = 1, ..n. Then using (5.2) we get

aiΨ = [ai0 , dΓ(|i0〉〈i|)]Ψ = ai0dΓ(|i0〉〈i|)Ψ (5.5)

By successively applying the following commutator

[dΓ(|i0〉〈i|), a�k

ik
] = δik,i · δ�k,∗ · a∗i0

we obtain the sum in (5.4).

Proof of Proposition 5.1. It is clear that ρF is a positive linear functional on CK.
We need to prove that it has the expression (5.1). From linearity of the creation
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operators and anti-linearity of the annihilation operators we conclude that it is
sufficient to consider the vectors fi in (5.1) belonging to the chosen orthogonal
basis. From

ρF (
n∏

k=1

a�k

ik
) =

〈
Ω,

n∏
k=1

a�k

ik
Ω

〉

and considering the fact that the creation operator increases the level by one
while the annihilation operator decreases it by one, we deduce that nonzero
expectations can appear only if n is even and the number of creators in the
monomial

∏n
k=1 a

�k

ik
is equal to that of annihilators. Furthermore a�1i1 must be an

annihilator and a�n

in
, a creator. We will thus consider that this is the case.

We put the monomial in the form ai1
∏n

k=2 a
�k

ik
and apply lemma 5.3. We obtain

a sum over all pairs (ai1 , a∗ik) of the same color (i1 = ik) and replace i1 by a new
color i0. We go now to the next annihilator in each term of the sum and repeat
the procedure, the new color which we add this time being different from all the
colors used previously. After n

2 steps we obtain a sum containing all possible
pairings of annihilators and creators of the same color in

∏n
k=1 a

�k

ik
:

ρF (
n∏

k=1

a�k

ik
) =

∑
V={V1,..,Vn

2
}

n
2∏

p=1

δikp ,ilp ·Q(Jkp , Jlp) · t(V)

with Vp = (kp, lp) and t(V) is given by

t(V) = ρF (
n∏

k=1

a�k

jk
)

such that jkp = jlp′ if and only if p = p′, for p, p′ ∈ {1, .., n2 }, Jkp is annihilator
and Jlp is creator.

Thus for each combinatorial Fock space (F, jF ) (which has a vacuum), the vacuum
state is described by a positive definite function tF on P2(∞).

Remark. We observe that the result can be generalized to a larger range of
states and monomials. Let us partition the index set J of the orthonormal basis
of the Hilbert space K

J = J1 + J2

and choose a state ρΦ(·) = 〈Φ, ·Φ〉 and monomials
∏n

k=1 a
�k

jk
such that jk ∈ J1

and Φ ∈ FF (K2) ⊂ FF (K) is a normalized vector where K2 is the subspace of
K with the orthogonal basis {ej}j∈J2 . Then it is easy to see that the argument
used in the above proof still holds and ρΦ is a Fock state for CK1 . In general ρΦ
and ρF do not coincide. When they do coincide we say that ρF has the pyramidal
independence property [13].
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5.2 Operations with symmetric Hilbert Spaces

We pass now to the first question which we have posed in the beginning of
this section. The various operations between species offer the opportunity of
creating new symmetric Hilbert spaces which sometimes give rise to interesting
interpolations between the two members. For the definitions of the operations
we refer back to Section 2.

1) Sums. Let (F, jF ) and (G, jG) be two combinatorial Fock spaces. From
Section 3 we know that

FF+G = FF ⊕FG.

Note that the vacuum of FF+G has dimension ≥ 2 if F [∅] �= ∅ �= G[∅]. The
natural weight on F +G is

jF+G(t1, t2) = jF (t1, t2) + jG(t1, t2)

which gives rise to operators

aF+G(h) = aF (h)⊕ 0 + 0⊕ aG(h).
We consider a linear combination of the two vacua (for |F [∅]| = |G[∅]| = 1)

Ωλ =
√
λΩF +

√
1− λΩG.

The corresponding state ρF+G,λ(·) = 〈Ωλ, ·Ωλ〉 interpolates linearly between ρF
and ρG

ρF+G,λ = λρF + (1− λ)ρG
and the same is true for the positive definite functions

tF+G,λ = λtF + (1− λ)tG. (5.6)

2) Products. Let (F, jF ) and (G, jG) be two combinatorial Fock spaces. We
consider the product species F ·G. As we have proved in Section 3, there is the
following isomorphism

FF ·G(K) = FF (K)⊗FG(K). (5.7)

Again there is a natural weight for the species F ·G. For f ∈ F [U1], g ∈ G[U2], f ′ ∈
F ′[U1], g′ ∈ G′[U2]:

jF ·G,λ((f, g), (f, g′)) =
√
λjG(g, g′)

jF ·G,λ((f, g), (f ′, g)) =
√
1− λjF (f, f ′)

all other values of jF ·G,λ being 0.
From (5.7) and the expression of jF ·G we obtain

a�F ·G(h) =
√
λa�F (h)⊗ 1+

√
1− λ1⊗ a�G(h)
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If |F [∅]| = |G[∅]| = 1 then the state ρF ·G(·) = 〈ΩF ⊗ ΩG, ·ΩF ⊗ ΩG〉 generates
the positive definite function:

tF ·G(V) =
∑
V1,V2

λ|V1|(1− λ)|V2|tF (V1) · tG(V2)

where the sum runs over all partitions of V in two sets, V1 and V2.
Example: The Green representation [25] of the (Fermi) parastatistics of order
p is an example of application of the product of species. We consider the p-th
power (E±)p of the species of oriented sets E±. Then the annihilation operators
are

a(h) =
1√
p

p∑
k=1

a(k)(h)

and the vacuum state is ρ(·) = 〈Ω, ·Ω〉 where a(k) is the term corresponding to
the k-th term in the product and

Ω = Ω(1)
a ⊗ ..⊗ Ω(p)

a

is the tensor product of the antisymmetric vacua of each of the species E(k)
± .

3) Cartesian Products. Let (F, jF ) and (G, jG) be two combinatorial Fock
spaces. We consider the cartesian product species F × G. The corresponding
weight has the expression:

jF×G((f, g), (f ′, g′)) = jF (f, f ′) · jG(g, g′)
We note that jF×G satisfies the invariance condition stated in the definition of
the weight.

Proposition 5.4 Let (F, jF ) and (G, jG) be two combinatorial Fock spaces both
having a single structure on ∅. Then the positive definite function associated to
the vacuum state of (F ×G, jF×G) satisfies:

tF×G(V) = tF (V) · tG(V) (5.8)

for all V ∈ P2(∞).

Proof. We construct a linear operator T from FF×G(K) to FF (K)⊗FG(K) with
the property that its restriction to a certain subspace Fext

F×G of FF×G(K), is an
isometry. The subspace Fext

F×G is spanned by vectors δ[(f,g),c] of the orthogonal
basis (F × G)(J) of FF×G(K) which have all colors different from each other,
i.e. c(i) �= c(j) for i �= j. We refer to Section 3 for the definitions related to the
orthogonal basis of FF×G(K).
The action of T on the basis vectors is:

T : Fext
F×G(K) → Fext

F (K) ⊗Fext
G (K)

δ[(f,g),c] �→ δ[f,c] ⊗ δ[g,c]
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We check that the operator is well defined. Indeed the map

i :
∞∑
n=0

(F ×G)[n]× Jn → (
∞∑
n=0

F [n]× Jn)× (
∞∑
n=0

G[n]× Jn)

((f, g), c) �→ ((f, c), (g, c))

commutes with the action of S(n) on the two sides, at each level and thus projects
to a well defined map on the quotient:

i : (F ×G)(J) → F (J)×G(J)
[(f, g), c] �→ ([f, c], [g, c])

This means that T is well defined. But as we have shown in Section 3, the vectors
δ[(f,g),c], δ[f,c] and δ[g,c] for which c(i) �= c(j) if i �= j, have norm one which implies
that T is an isometry.
Let us now consider the vector

ϕ
(p)
F =

p∏
k=1

a�k

F,ik
ΩF

the colors (ik)k=1,..,n satisfying the condition that there are no three identical
colors, and if there exists k1 < k2 such that ik1 = ik2 , then a

�k1
ik1

= aik1
and

a
�k2
ik2

= a∗ik2
. It is clear that ϕ(p)F ∈ Fext

F (K). Analogously we define ϕ(p)G and

ϕ
(p)
F×G. We want to prove by induction w.r.t. p that the action of the isometry
T is such that

T : ϕ(p)F×G → ϕ
(p)
F ⊗ ϕ(p)G . (5.9)

This implies in particular (5.8), when the monomial
∏p

k=1 a
�k

ik
contains equal

number of creators and annihilators pairing each other according to color, no
two pairs having the same color.
For p = 0 we have T (ΩF×G) = ΩF ⊗ ΩG. Suppose (5.9) holds for p. Then there
are two possibilities for increasing the length of the monomial

∏p
k=1 a

�k

ik
by one:

either by adding on the first position a creation operator a∗i0 such that the color
i0 does not appear in the rest of the monomial, or by adding an annihilation
operator ai0 such that the term a∗i0 appears once in the rest of the monomial.
We treat the two cases separately.
1.) suppose that we have ϕ(p)F×G =

∏p
k=1 a

�k

ik
ΩF×G, i0 �= ik which has the

decomposition
ϕ
(p)
F×G =

∑
[(f,g),c]

ϕ([(f, g), c])δ[(f,g),c]

with ϕ([(f, g), c]) ∈ C. Then

a∗F×G,i0ϕ
(p)
F×G =

∑
[(f,g),c],(f ′g′)

ϕ([(f, g), c]) · jF×G((f, g), (f ′, g′)) δ[(f ′,g′),c+
i0
]
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which implies

T (a∗F×G,i0ϕ
(p)
F×G) =

=
∑

[(f,g),c],(f ′g′)

ϕ([(f, g), c]) a∗F,i0δ[f,c] ⊗ a∗G,i0δ[g,c]

= a∗F,i0 ⊗ a∗G,i0T (ϕ
(p)
F×G) = a

∗
F,i0ϕ

(p)
F ⊗ a∗G,i0ϕ

(p)
G .

2.) suppose that we have ϕ(p)F×G =
∏p

k=1 a
�k

ik
ΩF×G such that the term a∗i0 ap-

pears exactly one time in the the monomial
∏p

k=1 a
�k

ik
. We use again the Fourier

decomposition
ϕ
(p)
F×G =

∑
[(f,g),c]

ϕ([(f, g), c])δ[(f,g),c]

and identify in each orbit [(f, g), c] ∈ (F × G)(J), a representant ((f, g), c) ∈
(F ×G)[n]× Jn such that c(n− 1) = i0. Then

aF×G,i0ϕ
(p)
F×G =

∑
[(f,g),c],(f ′g′)

ϕ([(f, g), c]) · jF×G((f ′, g′), (f, g)) δ[(f ′,g′),c−
i0
]

where c−i0 is the restriction of c to the set n− 1. Finally

T (aF×G,i0ϕ
(p)
F×G) =

=
∑

[(f,g),c],(f ′g′)

ϕ([(f, g), c]) · jF×G((f ′, g′), (f, g)) T (δ[(f ′,g′),c−
i0
])

=
∑

[(f,g),c],(f ′g′)

ϕ([(f, g), c]) · jF (f, f ′) · jG(g, g′)δ[f ′,c−
i0
] ⊗ δ[g′,c−

i0
]

= aF,i0ϕ
(p)
F ⊗ aG,i0ϕ

(p)
G

which proves the induction hypothesis for p+ 1 and the proposition.

Application: Combining the result of the previous proposition and certain vari-
ations on the species of rooted trees, we investigate more general commutation
relations of the type:

[a(h1), a∗(h2)] = 〈h1, h2〉 · f(N)

with f : N→ R and N the number operator characterized by

[N, a∗(h)] = a∗(h).

Theorem 5.5 Let P be a real polynomial with positive coefficients. Then the
commutation relations

[a(h1), a∗(h2)] = 〈h1, h2〉 · P (N)

are realizable on a symmetric Hilbert space.
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We split the proof in a few lemmas.

Lemma 5.6 Let (F, jF ) and (G, jG) be two symmetric Hilbert spaces for which
the commutation relations hold

[aF (h1), a∗F (h2)] = 〈h1, h2〉 · a(N)
[aG(h1), a∗G(h2)] = 〈h1, h2〉 · b(N)

where a, b are real functions. Then on (F ×G, jF×G) we have

[aF×G(h1), a∗F×G(h2)] = 〈h1, h2〉 · (a · b)(N)

Proof. This is a direct application of Lemmas 4.4, 4.5 and the following equations:

(j · j)k((f, g), (f ′, g′)) = (j · j)k(f, f ′) · (j · j)k(g, g′)
(j · j)k((f, g), (f ′, g′)) = (j · j)k(f, f ′) · (j · j)k(g, g′)

Lemma 5.7 Let A be the species of rooted trees. Let f ∈ A[U ],
g ∈ A[U + {∗}] and

j̃cA(f, g) = jA(f, g) + c
1
2 δf∗,g

a modification of the weight jA defined in section 4, with c, a positive constant.
The structure f∗ ∈ A[U + {∗}] is defined by:

f∗(u) =
{
f(u) if u �= root(f)
∗ if u = root(f).

Then on (A, j̃cA) we have:

[a(h1), a∗(h2)] = 〈h1, h2〉 · (N + c).

Proof. This is similar to the proof of Theorem 4.6, with an additional contribution
to (j · j)n(f, g) coming from the term c

1
2 δf∗,g in j̃cA.

Lemma 5.8 Let A×A be the species of ordered pairs of rooted trees. We define
the weight

jcA×A((f, g), (f
′, g′)) = jA(f, g) · jA(f ′, g′) + c 1

2 δf∗,f ′ · δg∗,g′ .

Then on (A×A, jcA×A) we have

[a(h1), a∗(h2)] = 〈h1, h2〉 · (N2 + c).
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Proof. Similar to the previous two lemmas.

Proof of Theorem 5.5. The polynomial P (x) has a canonical expression as prod-
uct of polynomials of the type x+ c and x2 + c with c ≥ 0. The theorem follows
by applying the previous 3 lemmas.

Remark. The result can be extended to power series with positive coefficients
and infinite radius of convergence. In particular for 0 ≤ q ≤ 1

s(x) = q−x =
∞∑
k=0

1
n!
· (− log q)n · xn

gives the commutation relations

[ai, a∗j ] = q
−Nδi,j

which characterize the q-deformations [10], [26], up to a ‘rescaling’ of the creation
and annihilation operators with a function of N .

4) Compositions. Let (F, jF ) and (G, jG) be two combinatorial Fock spaces.
We recall that the composition of G in F is a species whose structures are F -
assemblies of G-structures:

F ◦G[U ] =
∑
π

F [π]×
∏
p∈π

G[p].

We would like to define the annihilation and creation operators for the species
F ◦ G by making use of the available weights jF and jG. Apart from the con-
dition |G[∅]| = 0 we require |G[1]| = 1. We consider an arbitrary structure
(f, π, (gp)p∈π) ∈ F ◦G[U ] where π is a partition of the finite set U . Then we note
that there are two essentially different possibilities to ‘add’ a new point ∗, to the
set U : one can enlarge the size of π by creating a partition of U+{∗} of the form
π+ = π+ {{∗}}, or one can keep the size of π constant by adding ∗ to one of the
sets p ∈ π and obtain the partition π+p . Between π and π+p there is the bijection

αp : p′ →
{
p′ if p′ �= p
p+ {∗} if p′ = p

We recognize that in the first case the weight jF should play a role, while in the
second, the weight jG. According to the properties of the species F , one can
further distinguish among the subsets to which ∗ is added, by choosing (as we
did for the creation and annihilation operators) a weight jF,ε on the cartesian
product F × ε where ε is the species of elements: ε[U ] = U . Putting together the
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three data (jF , jG, jF,ε), we define:

jF◦G((f, π, (gp)p∈π), (f ′, π′, (g′p′)p′∈π′)) = jF (f, f ′) ·
∏
p∈π

δgp,g′p

+
∑
p∈π

δf ′,F [αp](f) · jF,ε(f, p) · jG(gp, g′p+{∗}).

where f ∈ F [π], gp ∈ G[p], etc.
Remark.We find this definition rather natural and broad enough to cover some
interesting examples. One can easily check that jF◦G satisfies the invariance
property characterizing the weights.
Example: The species Bal of ordered partitions or Ballots is the composition of
L (the species of linear orderings ), with E+ (the species of nonempty sets). A
typical structure over a finite set U looks like: s = (U1, .., Uk) with (Up)p∈{1,..,k},
a partition of U . The vacuum is the empty sequence Bal[∅] = {∅}. We use the
weights jE and jL as defined in section 4. The action of the creation operator at
the combinatorial level can be described as follows: we can add the point ∗ in
the last subset of the sequence s = (U1, .., Uk) and obtain s+k = (U1, .., Uk+ {∗}),
or we can create a new subset Uk+1 = {∗} and position it at the end of the
sequence s, producing s+ = (U1, .., Uk+1). We see that in this case the weight
jL,ε is simply identifying the last element of the sequence: jL,ε(s, Uk) = δUk,Up .
For the vacuum we set jBal({∅}, {∗}) = 1. We use 0 ≤ q ≤ 1 as an interpolation
parameter:

jBal(s, s′) = q
1
2 δs+

k
,s′ + (1 − q) 1

2 δs+,s′ (5.10)

Let us denote by tBal the positive definite function associated to the vacuum state
of the combinatorial Fock space (Bal, jBal), as defined in subsection 5. Following
[13] we associate to any pair partition V ∈ P2(∞) a set B(V) = {V1, ..,Vk} such
that V = V1 ∪ ... ∪Vk is the decomposition of V into connected sub-partitions or
blocks.

Theorem 5.9 Let V ∈ P2(∞). Then

tBal(V) = q|V|−|B(V)| (5.11)

Proof. We split the task of proving (5.11) into two simpler ones: first we prove
the strong multiplicativity property for t:

t(V) =
k∏

i=1

t(Vi) if B(V) = {V1, ..,Vk}

and then for V consisting of a single block, tBal(V) = q|V|−1. The proof of the
strong multiplicativity is analogous to that of Proposition 5.4. We consider an
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orthogonal basis (ej)j∈J of the Hilbert space K and a partition J = J1 + J2 of J
with the corresponding relation K = K1 ⊕K2. We define an isometry

S : Fext
Bal(K1)⊗Fext

Bal(K2)→ Fext
Bal(K1 ⊕K2)

and we will prove that it has a natural action on monomials of creation and
annihilation operators:

S(
∏
k

a�k

ik
Ω⊗

∏
p

a
�p

jp
Ω) =

∏
k

a�k

ik
·
∏
p

a
�p

jp
Ω. (5.12)

We recall that the two monomials satisfy certain properties which are described
in Proposition 5.4. The multiplicativity of tBal follows from equation (5.12) and
the isometric property of S.
The action of S on the orthogonal bases defined in Section 3 is:

δ[s1,c1] ⊗ δ[s2,c2] →
∑
s

q
a(s)
2 · (1− q) b(s)

2 · δ[s,c]

where, for arbitrary s1 = (U1, .., Uk) and s2 = (V1, .., Vp), the sum runs over all
s = (V1, .., Vp−1, V, U, U2, .., Uk) with Vp ⊂ V, U ⊂ U1 and U + V = U1 + Vp.
The coloring c restricts to c1 and c2 on the sets

⋃
α Uα respectively

⋃
β Vβ . The

coefficients appearing on the right side are a(s) = |V | − |Vp| and b(s) = |U |. As
‖δ[s,c]‖ = 1 and a(s) + b(s) = |U1|, we obtain

‖S(δ[s1,c1] ⊗ δ[s2,c2])‖2 =
|U1|∑
j=0

(|U1|
j

)
· qk · (1− q)|U1|−k

= 1 = ‖δ[s1,c1] ⊗ δ[s2,c2]‖2,
which proves the isometry property. The equation (5.12) follows by induction
w.r.t. k. For k = 0 is is obvious that

S

(
Ω⊗

∏
p

a
�p

jp
Ω

)
=
∏
p

a
�p

jp
Ω.

Then one can check on the basis vectors that

S · (a�j

j ⊗ 1) = a�j

j · S
for j ∈ J1, which provides the tool for the incrementation of k.

We pass now to the expression of tBal(V) for a one block partition V . The basic
observation is that the creation and annihilation operators have the following
form, stemming from that of jBal (see (5.10) ):

a�i

i = q
1
2 a�i

E,i + (1 − q) 1
2 a�i

L,i
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with the choice a∗E,iΩ = 0. Let MV =
∏2n

l=1 a
�l

il
be a monomial associated to

the pair partition V ∈ P2(2n). It is sufficient to prove that the only nonzero
contribution to MVΩ is brought by the the term aL,i1

∏2n−1
l=2 aE,il · a∗L,i2n

Ω =
qn−1Ω. Indeed the action of a∗L,i1 at the combinatorial level is to increase the
number of subsets in a sequence by 1. Thus the terms which are nonzero must
contain an equal number of creation and annihilation operators of type L. Let
us consider such a term. Then there exist 1 ≤ l1 ≤ l2 ≤ 2n such that on the
positions l1 and l2 we have annihilation respectively creation operators of type L
and for l1 ≤ l ≤ l2 we have type E operators. We have identified a submonomial

m = aL,l1 ·
l2−1∏

l=l1+1

a�l

E,il
· a∗L,l2

which is nonzero only if it corresponds to a pair partition, that is if all creation
and annihilation operators pair each other according to the color. But this is
possible only when l1 = 1 and l2 = 2n because V is a one-block pair partition.

4) Free Products. Inspired by the notion of freeness introduced by
Dan Voiculescu [65] we make the following:
Definition.Let (Fα)α∈J be a finite set of species of structures with
Fα[∅] = {∅} for all α ∈ J . The free product of (Fα)α∈J is the species defined by:

∗α∈J(Fα)[U ] = {(π, (s1, .., sp))|π = (U1, .., Up) ∈ Bal[U ], si ∈ Fαi [Ui],
αi �= αi+1 for i = 1, ..p− 1} (5.13)

for U �= ∅ and ∗α∈JFα[∅] = {∅}. The transport is induced from the species
(Fα)α∈J and Bal. From the definition it is clear that we have the following
combinatorial equation:

∗α∈J(Fα) = 1 +
∑
p≥1

∑
α1 �=α2 �=.. �=αp

Fα1+ · Fα2+ · ... · Fαp+

and using the property FF ·G = FF ⊗FG we obtain

F∗α∈J (Fα)(K) = ∗α∈J(FFα ,Ωα)

where the last object is the Hilbert space free product [65].
The corresponding weight is similar to the one used for the species Bal. For
fi ∈ Fαi [Ui] and f ′i ∈ Fα′

i
[Vi], it has the expression:

j∗α∈J(Fα)((π, (f1, .., fp)), (π
′, (f ′1, .., f

′
q))) =

δp,q · δαp,α′
p

p−1∏
i=1

δfi,f ′
i
· jαp(fp.f

′
p) + δp+1,q ·

p∏
i=1

δfi,f ′
i
· jα′

q
({∅}, f ′q).



60 II. Symmetric Hilbert spaces

Moreover the creation and annihilation operators can be written like

a�∗α∈J(Fα),i
=
∑
α

a�Fα,i

with the relations [65],
aFα,i · a∗Fβ ,j

= 0

for α �= β.
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ABSTRACT

A new approach to the generalised Brownian motion introduced by M. Bożejko
and R. Speicher is described, based on symmetry rather than deformation. The
symmetrization principle is provided by Joyal’s notions of tensorial and com-
binatorial species. Any such species V gives rise to an endofunctor FV of the
category of Hilbert spaces with contractions. A generalised Brownian motion is
an algebra of creation and annihilation operators acting on FV (H) for arbitrary
Hilbert spaces H and having a prescription for the calculation of vacuum expec-
tations in terms of a function t on pair partitions. The positivity is encoded by a
∗-semigroup of ‘broken pair partitions’ whose representation space with respect
to t is V . The existence of two second quantisation functors Γ∞t and ∆t is dis-
cussed and connected to the multiplicativity property of the function t . For a
certain one parameter interpolation between the fermionic and the free Brownian
motion it is shown that the ‘field algebras’ Γ(K) are type II1 factors when K is
infinite dimensional.

2This chapter is based on reference [27].
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1 Introduction

In non-commutative probability theory one is interested in finding generalisations
of classical probabilistic concepts such as independence and processes with inde-
pendent stationary increments. Motivated by a central limit theorem result and
by the analogy with classical Brownian motion, M. Bożejko and R. Speicher pro-
posed in [13] a class of operator algebras called ‘generalised Brownian motions’
and investigated an example of interpolation between the classical [53] and the
free motion of Voiculescu [65]. A better known interpolation is provided by the
‘q-deformed commutation relations’ [9, 10, 11, 21, 23, 26, 45, 67]. Such an oper-
ator algebra is obtained by performing the GNS representation of the free tensor
algebra A(K) over an arbitrary infinite dimensional real Hilbert space K, with
respect to a ‘Gaussian state’ ρ̃t defined by the following ‘pairing prescription’:

ρ̃t(ω(f1) . . . ω(fn)) =

{
0 if n odd∑
V∈P2(n)

t(V) ∏
(k,l)∈V

〈fk, fl〉 if n even (1.1)

where fi ∈ K, ω(fi) ∈ A(K) and the sum runs over all pair partitions of the
ordered set {1, 2, . . . , n}. The functional is uniquely determined by the complex
valued function t on pair partitions. Classical Brownian motion is obtained by
taking K = L2(R+) and Bs := ω(1[0,s)) with the constant function t(V) = 1 on
all pair partitions; the free Brownian motion [65] requires t to be 0 on crossing
partitions and 1 on non-crossing partitions.

If one considers complex Hilbert spaces, the analogue of a Gaussian state is
called a Fock state. We show that the GNS representation of the free algebra
C(H) of creation and annihilation operators with respect to a Fock state ρt can
be described in a functorial way inspired by the notions of tensorial species of
Joyal [35, 36]: the representation space has the form

Ft(H) :=
∞⊕
n=0

1
n!
Vn ⊗s H⊗n (1.2)

where Vn are Hilbert spaces carrying unitary representations of the symmetric
groups S(n) and ⊗s means the subspace of the tensor product containing vectors
which are invariant under the double action of S(n). The creation operators have
the expression:

a∗t(h) v ⊗s (h0 ⊗ . . .⊗ hn−1) = (jnv)⊗s (h0 ⊗ . . .⊗ hn−1 ⊗ hn) (1.3)

where jn : Vn → Vn+1 is an operator which intertwines the action of S(n) and
S(n+ 1).

In Section 3 we connect these Fock representations with positive functionals
on a certain algebraic object BP2(∞) which we call the ∗-semigroup of ‘broken
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pair partitions’. The elements of this ∗-semigroup can be described graphically
as segments located between two vertical lines which cut through the graphical
representation of a pair partition. In particular, the pair partitions are elements
of BP2(∞). We show that if ρt is a Fock state then the function t has a natural
extension to a positive functional t̂ on BP2(∞). The GNS-like representation
with respect to t̂ provides the combinatorial data (Vn, jn)∞n=0 associated to ρt.

The representation of A(K) with respect to a Gaussian state ρ̃t is a ∗-algebra
generated by ‘fields’ ωt(f). Monomials of such fields can be seen as moments, with
the corresponding cumulants being a generalisation of the Wick products known
from the q-deformed Brownian motion [9]. Using generalised Wick products we
prove that any Gaussian state ρ̃t extends to a Fock state ρt on the algebra of
creation and annihilation operators C(KC) (see section 4).

Second quantisation is a special type of functor of white noise, a functor from
the category of real Hilbert spaces with contractions to the category of (non-
commutative) probability spaces such that the zero dimensional Hilbert space {0}
is mapped into the algebra C. The underlying idea is to use the field operators
ωt(·) to construct von Neumann algebras Γt(K) for any real Hilbert space K and
a fixed positive definite functions t. The question is for which t one can carry out
the construction of such a functor Γt. From general considerations on functors of
second quantisation we obtain that the function t must have the multiplicative
property, a form of statistical independence. Conversely, for multiplicative t
the field operators are essentially selfadjoint, and provide a natural definition
of the von Neumann algebra Γt(K). However two other algebras seem to be
more suitable for proving functorial properties: Γ∞t (K) and ∆t(K) both acting
on Ft(KC ⊕ <2(Z)) by letting the <2

R
(Z) ‘modes’ passive. We show that ∆t is

a functor of second quantisation while Γ∞t is a functor from Hilbert spaces to
non-commutative probability spaces for which Γ∞(R) = C if and only if ρt is
faithful for Γt(<2R(Z)). In this case the two functors coincide.

In the last section we develop a useful criterion, in terms of the spectrum of
a characteristic contraction, for factoriality of the algebras Γt(<2(Z)) in the case
when the vacuum state ρt is tracial. We then apply it to a particular example
of positive definite function tq where 0 ≤ q < 1, which interpolates between the
bosonic and free cases and has been introduced in [13] (see chapter II for another
proof of the positivity). We conclude that Γt(<2(Z)) is a type II1 factor.

2 Definitions and description of the Fock repre-
sentation

The generalised Brownian motions [13] are representations with respect to special
gaussian states on free algebras over real Hilbert spaces. We start by giving all
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necessary definitions and subsequently we will analyze the structure of the Fock
representations which are intimately connected with the generalised Brownian
motion (see section 4) .

Definition 2.1 Let K be a real Hilbert space. The algebra A(K) is the free
unital ∗-algebra with generators ω(h) for all h ∈ K, divided by the relations:

ω(af + bg) = aω(f) + bω(g), ω(f) = ω(f)∗ (2.1)

for all f, g ∈ K and a, b ∈ R.

Definition 2.2 Let H be a complex Hilbert space. The algebra C(H) is the free
unital ∗-algebra with generators a(h) and a∗(h) for all h ∈ H, divided by the
relations:

a∗(λf + µg) = λa∗(f) + µa∗(g), a∗(f) = a(f)∗ (2.2)

for all f, g ∈ H and λ, µ ∈ C.

We notice the existence of the canonical injection from A(K) to C(KC)

ω(h) �→ a(h) + a∗(h) (2.3)

where KC is the complexification of the real Hilbert space K. On the algebras
defined above we would like to define positive linear functionals by certain pairing
prescriptions for which we need some notions of pair partitions.

Definition 2.3 Let S be a finite ordered set. We denote by P2(S) is the set of
pair partitions of S, that is V ∈ P2(S) if V consists of 1

2n disjoint ordered pairs
(l, r) with l < r having S as their reunion. The set of all pair partitions is

P2(∞) :=
∞⋃
r=0

P2(2r). (2.4)

Note that P2(n) = ∅ if n is odd. In this paper the symbol t will always stand for
a function t : P2(∞)→ C. We will always choose the normalization t(p) = 1 for
p the pair partition containing only one pair.

Definition 2.4 A Fock state on the algebra C(H) is a positive normalized linear
functional ρt : C(H)→ C of the form

ρt(a�1(f1) . . . a�n(fn)) =
∑

V∈P2(n)

t(V)
∏

(k,l)∈V
〈fk, fl〉 ·Q(Jk, Jl) (2.5)

the symbols Ji standing for creation or annihilation and the two by two covariance
matrix Q is given by

Q =
(
ρ(aiai) ρ(aia∗i )
ρ(a∗i ai) ρ(a∗i a

∗
i )

)
=
(

0 1
0 0

)
.

where ai = a(ei) and ei is an arbitrary normalized vector in H. Note that the
l.h.s. of (2.5) is zero for odd values of n.
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Definition 2.5 A Gaussian state on A(K) is a positive normalized linear func-
tional ρ̃t with moments

ρ̃t(ω(f1) . . . ω(fn)) =
∑

V∈P2(n)

t(V)
∏

(k,l)∈V
〈fk, fl〉 (2.6)

Remark. The restriction of a Fock state ρt on C(KC) to the subalgebra A(K) is
the Gaussian state ρ̃t. If ρt is a Fock state for all choices of K then we call the
function

t : P2(∞)→ C

positive definite.
The GNS representations associated to pairs (C(H), ρt) have been studied in a
number of cases. One obtains a representation πt of C(H) as ∗-algebra of creation
and annihilation operators acting on a Hilbert space Ft(H) which has a Fock-type
structure

Ft(H) =
∞⊕
n=0

Hn

with Hn being a (symmetric) subspace of H⊗n in the case of bosonic or fermionic
algebras [53], the full tensor product in models of free probability [65], a deforma-
tion of it in the case of q-deformations [9, 10, 11, 21, 23, 26, 45, 67], or even ‘larger’
spaces containing more copies of H⊗n with a deformed inner product in the case
of another deformation depending on a parameter −1 ≤ q ≤ 1 constructed in
[13]. The action of the creation operators is a∗(f)Ωt = f ∈ H,

a∗(f)f1 ⊗ . . .⊗ fn = f ⊗ f1 ⊗ . . .⊗ fn
while that of the annihilation operator is less transparent, depending on the
inner product on Hn. Proving the positivity of this inner product is in general
nontrivial.

In reference [28] (chapter II of this thesis) we have followed a different, more
combinatorial approach to the study of the representations πt(C(H)) for various
examples of positive definite functions t. We give here a brief description of our
construction. The representation space is denoted by FV (H) and has certain
symmetry properties encoded by a sequence (Vn)∞n=0 of (not necessarily finite
dimensional) Hilbert spaces such that each Vn carries a unitary representation of
the symmetric group S(n)

S(n) ' π �→ U(π) ∈ U(Vn). (2.7)

In concrete examples we have realized Vn as <2(F [n]) where F [ ] is a species of
structures [5, 35, 36], i.e., a functor from the category of finite sets with bijections
as morphisms to the category of finite sets with maps as morphisms. For each
finite set A, the rule F prescribes a finite set F [A] whose elements are called
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F -structures over the set A. Moreover for any bijection σ : A → B there is a
map F [σ] : F [A] → F [B] such that F [σ ◦ τ ] = F [σ] ◦ F [τ ] and F [idA] = idF [A].
In particular for n := {0, 1, . . . n − 1} there is an action of the symmetric group
S(n) on the set of structures:

∀π ∈ S(n), F [π] : F [n]→ F [n]

which gives a unitary representation U(·) of S(n) on Vn := <2(F [n]). Simple
examples are such species as sets, ordered sequences, trees, graphs, etc.
We define

FV (H) :=
∞⊕
n=0

1
n!
Vn ⊗s H⊗n (2.8)

where Vn⊗sH⊗n is the subspace of Vn⊗H⊗n spanned by the vectors ψ invariant
under the action of S(n):

ψ = (U(π) ⊗ Ũ(π))ψ, for all π ∈ S(n)

with Ũ(π) ∈ U(H⊗n),
Ũ(π) : h0 ⊗ . . .⊗ hn−1 �→ hπ−1(0) ⊗ . . .⊗ hπ−1(n−1), (2.9)

the factor 1
n! referring to the inner product. The symmetric Hilbert space FV (H)

is spanned by linear combinations of vectors of the form:

v ⊗s h0 ⊗ . . .⊗ hn−1 :=
∑

π∈S(n)
U(π)v ⊗ Ũ(π)h0 ⊗ . . .⊗ hn−1. (2.10)

The creation and annihilation operators are defined with the help of a sequence
of densely defined linear maps (jn)∞n=0 with jn : Vn → Vn+1 satisfying the inter-
twining relations

jn · U(π) = U(ιn(π)) · jn, ∀π ∈ S(n) (2.11)

with ιn : S(n) → S(n + 1) being the canonical embedding associated to the
inclusion of sets

n := {0, 1, . . . , n− 1} ↪→ n+ 1 := {0, 1, . . . , n}. (2.12)

In the examples using species of structures the map jn : <2(F [n])→ <2(F [n+1])
is constructed by giving the matrix elements jn(s, t) := 〈δt, Vnδs〉 which can be
seen as ‘transition coefficients’ between s ∈ F [n] and t ∈ F [n+1]. For example if
the species F [·] is that of rooted trees one can choose jn(s, t) = 1 if the tree s is
obtained by removing the leaf with label n from the tree t; otherwise we choose
jn(s, t) = 0. This is described in detail in [28], chapter II of this thesis. Notice
that there is no canonical manner of defining jn but certain species of structures
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offer rather natural definitions, for example the species of sets, ordered sequences,
rooted trees, oriented graphs, sequences of non empty sets, etc [28].
Let h ∈ H; the creation operator a∗V,j(h) has the action:

a∗V,j(h)v ⊗s (h0 ⊗ . . .⊗ hn−1) := (jnv)⊗s (h0 ⊗ . . .⊗ hn−1 ⊗ h). (2.13)

The annihilation operator aV,j(h) is the adjoint of a∗V,j(h). Its action on the
n+ 1-th level is given by the restriction of the operator

ãV,j(h) : Vn+1 ⊗H⊗n+1 → Vn ⊗H⊗n
v ⊗ (h0 ⊗ . . .⊗ hn) �→ 〈h, hn〉 j∗nv ⊗ (h0 ⊗ . . .⊗ hn−1). (2.14)

to the subspace Vn+1⊗sH⊗n+1. Note that due to condition (2.11) the operators
a∗V,j(h), aV,j(h) are well defined. Let us denote by CV,j(H) the ∗-algebra generated
by all operators a∗V,j(h), aV,j(h) and by ΩV ∈ V0 the normalized vacuum vector in
FV (H). The following theorem is a generalisation of Proposition 5.1 in chapter
II:

Theorem 2.6 Let (FV (H), CV,j(H),ΩV ) be a representation of C(H) as described
above, then the state ρV,j(·) = 〈ΩV , ·ΩV 〉 is a Fock state, i.e. there exists a pos-
itive definite function t on pair partitions depending on (Vn, jn)∞n=0 such that
ρV,j = ρt.

Sketch of the proof. Let A ∈ B(H). On FV (H) we define the operator

dΓV (A) : vn ⊗s f0 ⊗ . . .⊗ fn−1 �→
n−1∑
k=0

vn ⊗s f0 ⊗ . . .⊗Afk ⊗ . . .⊗ fn−1 (2.15)

for vn ∈ Vn, fi ∈ H. Then the following commutation relations hold:

[aV,j(f), dΓV (A)] = aV,j(A∗f). (2.16)

In particular by choosing an orthonormal basis {ei}i∈I in H and denoting a�i :=
a�V,j(ei) we obtain for all ik �= i0

[dΓV (|ei0〉〈ei|), a�k

ik
] = δik,i · δ�k,∗ · a∗i0 . (2.17)

Let ψ =
(∏n

k=1 a
�k

ik

)
ΩV . Then ai0ψ = 0 if i0 �= ik for all k = 1, . . . , n. By using

(2.16), it follows that

aiψ = [ai0 , dΓ(|ei0〉〈ei|)]ψ = ai0dΓ(|ei0〉〈ei|)ψ. (2.18)

We then apply (2.17) repeatedly to obtain

ai

(
n∏

k=1

a�k

ik

)
ΩV =

n∑
k=1

δi,ik · δ�k,∗ · ai0
(
k−1∏
p=1

a
�p

ip

)
· a∗i0 ·


 n∏

q=k+1

a
�q

iq


ΩV . (2.19)
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The vacuum expectation of a monomial
∏n

k=1 a
�k

ik
can be different from zero

only if the number of creators is equal to the number of annihilators, a�1i1 is an
annihilator and a�n

in
a creator. We will therefore assume that this is the case. We

put the monomial in the form ai1
∏n

k=2 a
�k

ik
and apply (2.19). We obtain a sum

over all pairs (ai1 , a∗ik) of the same color (i1 = ik) and replace i1 by a new color
i0. We pass now to the next annihilator in each term of the sum and repeat
the procedure, the new color which we add this time being different from all the
colors used previously. After n

2 steps we obtain a sum containing all possible
pairings of annihilators and creators of the same color in

∏n
k=1 a

�k

ik
:

ρV,j(
n∏

k=1

a�k

ik
) =

∑
V∈P2(n)

∏
k,l∈V

δik,il ·Q(Jk, Jl) · t(V) (2.20)

with t(V) := ρV,j(
∏n

k=1 a
�k

jk
), where the indices jk, Jk satisfy the following condi-

tions: if k �= l then jk = jl if and only if (k, l) ∈ V , in which case a�k

jk
is annihilator

and a�l

jl
is creator.

We prove now that the converse is also true.

Theorem 2.7 Let t be a positive definite function on pair partitions. Then for
any complex Hilbert space H the GNS-representation of (C(H), ρt) is unitarily
equivalent to (FV (H), CV,j(H),ΩV ) for a sequence (Vn, jn)∞n=0 dependent only up
to unitary equivalence on t.

Proof. We first consider H := <2(N∗) with the orthonormal basis (ei)∞i=1. We
split the proof in 3 steps.
1. Identify the spaces Vn and the maps jn.
Let (Ft(H), Ct(H),Ωt) be the triple obtained from the GNS-construction. Let
Vn be the closure of the subspace of Ft(H) spanned by vectors of the form
vn := (

∏2p+n
k=1 a�k

t (eik))Ωt for which the following conditions hold:
(i) in the sequence (a�k

t (eik))
2p+n
k=1 each creation operator a∗t(ej) appears ex-

actly once for 1 ≤ j ≤ n;
(ii) the rest of the sequence contains p creation operators (a∗t(elq))

p
q=1 and

p annihilation operators (at(elq))
p
q=1 for p vectors (elq)

p
q=1 different among each

other and with lq /∈ {1, . . . , n} for all 1 ≤ q ≤ p. The vector vn does not
depend in fact on the colors (lq)

p
q=1 but only on the positions of the creation and

annihilation operators in the monomial. Thus when necessary we can consider
lq > N for all 1 ≤ q ≤ n and some fixed big enough N ∈ N .
The map jn is defined as the restriction of a∗t(en+1) to Vn:

jn

2p+n∏
k=1

a�k

t (eik)Ωt = a∗t(en+1)
2p+n∏
k=1

a�k

t (eik)Ωt.
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Obviously, the image of jn lies in Vn+1.
The state ρt is invariant under unitary transformations U ∈ U(H):

ρt(
n∏

k=1

a�k(eik)) = ρt(
n∏

k=1

a�k(Ueik)).

Thus

Ft(U) :
n∏

k=1

a�k

t (eik)Ωt �→
n∏

k=1

a�k

t (Ueik)Ωt (2.21)

is unitary and Ft(U1)Ft(U2) = Ft(U1U2) for two unitaries U1, U2. The action
on the algebra of creation and annihilation operators is

Ft(U)a
�
t(f)Ft(U∗) = a

�
t(Uf). (2.22)

Considering unitaries which act by permuting the basis vectors {e1, . . . , en} and
leave all the others invariant we obtain a unitary representation of S(n) on
Vn. The intertwining property (2.11) follows immediately from the definition
of jn. Having the ‘combinatorial data’ (Vn, jn), we can construct the triple
(FV (H), CV,j(H),ΩV ) according to equations (2.8, 2.13, 2.14). Similarly to Ft(U)
we have the unitary

FV (U) : FV (H) → FV (H)
v ⊗s (h0 ⊗ . . . hn−1) �→ v ⊗s (Uh0 ⊗ . . .⊗ Uhn−1) (2.23)

for U ∈ U(H), v ∈ Vn. We call FV (U) the second quantisation of U at the Hilbert
space level. Its action on operators is:

FV (U)a
�
V,j(f)FV (U∗) = a

�
V,j(Uf). (2.24)

Analogously to Vn we define for any finite subset {i1, . . . , in} ⊂ N the linear sub-
space V (i1, . . . , in) of Ft(H) spanned by applying to the vacuum Ωt monomials∏2p+n

k=1 a�k

t (ejk
) for which the colors (jk)

2p+n
k=1 satisfy conditions similar to i), ii)

but now with {i1, . . . , in} instead of {1, . . . , n}. For a unitary U which permutes
the basis vectors, Uei = eu(i) we get

Ft(U)V (i1, . . . , in) = V (u(i1), . . . , u(in)). (2.25)

One can check by calculating inner products that any two such spaces are either
orthogonal or coincide. Similarly, we define the following subspaces of FV (H)

Ṽ (i1, . . . , in) := lin{v ⊗s (ei1 ⊗ . . .⊗ ein) : v ∈ Vn} (2.26)

which are also orthogonal for different sets of ‘colors’ {i1, . . . , in}.
2. We proceed by proving the equality of the states ρt and ρV,j .
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As ρV,j is a Fock state by Theorem 2.6, we need only verify that the positive
definite function t we have started with and the one derived from ρV,j coincide.
By definition there is an isometry

Tn : Vn → FV,j(H)
v �→ v ⊗s (e1 ⊗ . . .⊗ en). (2.27)

Furthermore for any unitary U ∈ U(H) which permutes the basis vectors such
that Uek = eik , the operator

T (i1, . . . , in) : V (i1, . . . , in)→ Ṽ (i1, . . . , in)

defined by
T (i1, . . . , in) := FV (U)TnFt(U∗) (2.28)

depends only on the set {i1, . . . , in}. Finally, the definitions of jn, a�V,j(f) amounts
to the fact that the following diagram commutes

Vn
Tn−−−−→ Ṽn

a∗
t (en+1)

- -a∗
V,j(en+1)

Vn+1
Tn+1−−−−→ Ṽn+1

(2.29)

and by acting from the left and from the right with the appropriate second
quantisation operators and using (2.28, 2.22, 2.24) we obtain

V (i1, . . . , in)
T (i1,...,in)−−−−−−−→ Ṽ (i1, . . . , in)

a∗
t (ein+1)

- -a∗
V,j(ein+1)

V (i1, . . . , in+1)
T (i1,...,in+1)−−−−−−−−→ Ṽ (i1, . . . , in+1)

(2.30)

with a similar diagram for the annihilation operators. This is sufficient for proving
the equality ρt(

∏2n
k=1 a

�k

t (eik)) = ρV,j(
∏2n

k=1 a
�k

V,j(eik)) for monomials containing
n pairs of creation and annihilation operators of n different colors.
3. Finally we prove that ΩV,j is cyclic vector for CV,j(H).
The space FV (H) has a decomposition with respect to occupation numbers

FV (H) =
⊕

{n1,...,nk}
FV (n1, . . . , nk)

with

FV (n1, . . . , nk) = lin{v ⊗s (e1 ⊗ . . .⊗ e1︸ ︷︷ ︸
n1

⊗ . . .⊗ ek ⊗ . . .⊗ ek︸ ︷︷ ︸
nk

, v ∈ Vn1+···+nk
}.

(2.31)
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We recall that Ṽn = FV (1, . . . , 1︸ ︷︷ ︸
n

) is spanned by linear combinations of vectors of

the form
2p+n∏
k=1

a�k

V,j(eik)ΩV = v ⊗s (e1 ⊗ . . .⊗ en)

with monomials satisfying the conditions i) and ii). By replacing the creation
operators (a∗(ek))nk=1 appearing in the monomial, with the sequence containing
ni times the creator a∗(ei) for i ∈ {1, . . . p} and

∑p
i=1 ni = n we obtain a set

of vectors which are dense in FV (n1, . . . , np) and this completes the proof of
the cyclicity of the vacuum. Putting together 1., 2. and 3. we conclude that
the representations (Ft(H), Ct(H),Ωt) and (FV (H), CV,j(H),ΩV ) are unitarily
equivalent for infinite dimensional H. The case H finite dimensional follows by
restriction of the previous representations to the appropriate subspaces.

3 The ∗-semigroup of broken pair partitions

The content of the last two theorems can be summarized by the following fact:
there exist a bijective correspondence between positive definite functions on pair
partitions t, and ‘combinatorial data’ (Vn, jn)∞n=0. This suggests that the pos-
itivity of t can be characterized in a simpler way by regarding t as a positive
functional on an algebraic object containing P2(∞) as a subset. Theorem 1 of
[13] shows that a positive definite function on pair partitions t restricts to pos-
itive definite functions on the symmetric groups S(n) for all n ∈ N through the
embedding

S(n) ' τ �→ Vτ ∈ P2(n) (3.1)

given by
Vτ := {(i, 2n+ 1− τ(i)) : i = 1, . . . , 2n}. (3.2)

However t is not determined completely by its restriction and thus one would like
to find another algebraic object which completely encodes the positivity require-
ment. We will show that this is the ∗-semigroup of broken pair partitions which
we denote by BP2(∞) and will be described below. Pictorially, the elements of
the semigroup are segments obtained by sectioning pair partitions with vertical
lines.

Definition 3.1 Let X be an arbitrary finite ordered set and (L,P,R) a disjoint
partition of X. We consider all the triples (V , fl, fr) where V ∈ P2(P ) and

fl : L→ {1, . . . , |L|}, fr : R→ {1, . . . , |R|} (3.3)

are bijections. Any order preserving bijection α : X → Y induces an obvious map

(V , fl, fr)→ (α ◦ V , fl ◦ α−1, fr ◦ α−1) (3.4)
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where α ◦ V := {(α(a), α(b)) : (a, b) ∈ V}. This defines an equivalence relation;
an element d of BP2(∞) is an equivalence class of triples (V , fl, fr) under this
equivalence relation.

We have the following pictorial representation: an element d is given by a diagram
containing a sequence of l + r + 2n points displayed horizontally with 2n of
them connected into n pairs, l points are connected with other l points vertically
ordered on the left side (left legs) and r points are connected with r points
vertically ordered on the right (right legs). An example is given in Figure 3.1.
In this case we have X = {1, . . . , 5}, V = {(1, 4)}, the left legs are connecting
the points labeled 2 and 5 on the horizontal to the the points on the left side
which are ordered vertically and labeled by 1 and 2. Similarly for the right legs.
Usually we will label the ordered set of horizontal points will be of the form
{n, n+ 1, . . . n+m}.
The product of two diagrams is calculated by drawing the diagrams next to each
other and joining the right legs of the left diagram with the left legs of the right
diagram which are situated at the same level on the vertical. Figure 3.2 illustrates
an example.
More formally if di = (Vi, fl,i, fr,i) for i = 1, 2 with the notations from Definition
3.1, then d1 · d2 = (V , fl, fr) with

V = V1 ∪ V2 ∪ {(f−1r,1 (i), f
−1
l,2 (i)) : i ≤ min(|R1|, |L2|)}, (3.5)

fl is defined on the disjoint union L1 + (L2 \ f−1l,2 ({1, . . . ,min(|R1|, |L2|)}) by{
fl(a) = fl,1(a) for a ∈ L1
fl(b) = fl,2(b) + |L1| for b ∈ L2 \ f−1l,2 ({1, . . . ,min(|R1|, |L2|)}

and similarly for fr. The product does not depend on the chosen representatives
for di in their equivalence class and is associative. The diagrams with no legs are
the pair partitions, thus P2(∞) ⊂ BP2(∞).
The involution is given by mirror reflection (see Figure 3.3). If d = (V , fl, fr)
then d∗ = (V∗, fr, fl) with the underlying set X∗ obtained by reversing the order
on X and

V∗ := {(b, a) : (a, b) ∈ V} (3.6)

is the adjoint of V . It is easy to check that

(d1 · d2)∗ = d∗2 · d∗1.
Let t be a linear functional on pair partitions. We extend it to a function t̂

on BP2(∞) defined as

t̂(d) =
{

t(d) if d ∈ P2(∞)
0 otherwise. (3.7)
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Theorem 3.2 The function t on pair partitions is positive definite if and only
if t̂ is positive on the ∗−semigroup BP2(∞).

Proof. The main ideas are already present in the proof of Proposition 2.7. A GNS-
type of construction associates to the pair (BP2(∞), t̂) a cyclic representation χt

of BP2(∞) on a Hilbert space V with cyclic vector ξ ∈ V . We have 〈ξ, χt(d)ξ〉 =
t̂(d). We denote by BP(n,0)

2 the set of diagrams with n left legs and no right legs.
Then using

〈χt(d1)ξ, χt(d2)ξ〉V = t̂(d∗1 · d2) (3.8)

we obtain:
1. the representation space V is of the form

V =
∞⊕
n=0

Vn where Vn = lin{χt(d)ξ : d ∈ BP(n,0)
2 } (3.9)

2. on BP(n,0)
2 there is an obvious action of S(n) by permutations of the positions

of the left ends of the legs. Figure 3.4 shows the action of the transposition τ1,2.
This induces a unitary representation of S(n) on Vn as

τ(d1)∗ · τ(d2) = d∗1 · d2 (3.10)

for all d1, d2 ∈ BP(n,0)
2 and τ ∈ S(n).

3. let d0 ∈ BP(1,0)
2 be the ‘left hook’ (the diagram with no pairs). Then j :=

χt(d0) is an operator on V whose restriction jn to Vn maps it into Vn+1 and
satisfies the intertwining condition (2.11) with respect ot the representations of
the symmetric groups on Vn and Vn+1.
Using the data (Vn, jn) we construct the triple (FV (H), CV,j(H),ΩV ). According
to Proposition 2.6 there exists a positive definite function on pair partitions t′

such that ρV,j = ρt′ . We have to prove that t, which is the restriction of t̂ to
P2(∞) coincides with t′.
Any pair partition V can be written in a ‘standard form’ (see Figure 3.5):

V = (d∗0)
pm · πm−1(. . . π2(dk2

0 · (d∗0)p1 · π1(dk1
0 ))) (3.11)

where the permutations πi are uniquely defined by the requirement that any two
lines connecting two pairs in the associated graphic intersect minimally and at
the rightmost possible position.
Let

∏2n
k=1 a

�k

V,j(eik) be a monomial containing n creation operators and n anni-
hilation operators such that by pairing creators with annihilators of the same
color on their right side, we generate a pair partition V . The definitions (2.13),
(2.14) of the creation and annihilation operators give their expressions in terms
of the operator j, j∗ and the unitary representations of the permutation groups
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on the spaces Vn. By using the intertwining property (2.11) we can pass all
permutations to the left of the j-terms and obtain:

t′(V) =

〈
ΩV ,

2n∏
k=1

a�k

V,j(eik)ΩV

〉

=
〈
ξ, (j∗)pm · U(πm−1) . . . U(π2) · jk2 · (j∗)p1 · U(π1) · jk1ξ

〉
V

= 〈ξ, χt(V)ξ〉V = t̂(V)
Conversely, starting from a positive definite function t we construct the represen-
tation (V, χt(BP2(∞)), ξ) through applying Theorem 2.7 and thus t̂ is positive
on BP2(∞).

4 Generalised Wick products

As argued in the introduction, the representations of the ‘field algebras’ A(K)
with respect to Gaussian states ρ̃t give rise to (non-commutative) processes called
generalised Brownian motions [13] for K (infinite dimensional) real Hilbert space.
In all known examples such representations appear as restrictions to the subal-
gebra A(K) of Fock representations of the algebra of creation and annihilation
operators C(KC) with respect to the state ρt. We will prove that this is always
the case, thus answering a question put in [13].
Let

t : P2(∞)→ C (4.1)

be such that ρ̃t is a Gaussian state on A(K) for K infinite dimensional Hilbert
space. Let (F̃t(K), π̃t(A(K)), Ω̃t) be the GNS-triple associated to (A(K), ρ̃t).
The ∗-algebra π̃t(A(K)) is generated by the symmetric operators ωt(f) := π̃t(ω(f))
for all f ∈ K with common domain D := π̃t(A(K))Ω̃t. The selfadjointness of
the field operators will be addressed in section 5. For the moment, all operators
discussed are defined on D.

In analogy to (2.21) for any orthogonal operator O ∈ O(K) there exists a
unitary

F̃t(O) :
n∏

k=1

ωt(fk)Ω̃t →
n∏

k=1

ωt(Ofk)Ω̃t (4.2)

and F̃t(O1)F̃t(O2) = F̃t(O1 ·O2) for O1, O2 ∈ O(K). This induces an action on
the ∗-algebra π̃t(A(K)):

Γ̃t(O) : X �→ F̃t(O)XF̃t(O∗). (4.3)

Certain operators play a similar role to that of the Wick products in quantum
field theory [53, 59] or for the q-deformed Brownian motion [9, 10].
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Definition 4.1 Let {P, F} be a partition of the ordered set {1, . . . , 2p+n} with
|P | = 2p and |F | = n. Let V = {(l1, r1), . . . , (lp, rp)} ∈ P2(P ) and f : F → K.
For every V ′ = {(l′1, r′1), . . . , (l′p′ , r′p′)} ∈ P2(P ′) with P ′ ⊂ F we define

ηf (V ′) :=
p′∏
i=1

〈f(l′i), f(r′i)〉 . (4.4)

The generalised Wick product associated to (V , f) is the operator Ψ(V , f) deter-
mined recursively by

Ψ(V , f) +
∑

∅�=P ′⊂F

∑
V′∈P2(P ′)

ηf (V ′) ·Ψ(V ∪ V ′, f �F\P ′) =M(V , f)

M(V , f) := w−lim
n→∞

2p+n∏
k=1

ωt(fk,n) (4.5)

where fk,n := f(k) for k ∈ F and fli,n = fri,n = enp+i for i = 1, . . . , p with
(el)l∈N a set of normalized vectors, orthogonal to each other.

Remarks. 1) The right side of the last equation needs some clarifications. The
operatorM(V , f) is defined on D by its matrix elements. If ψi =

∏mi

a=1 ωt(g
(i)
a )Ω̃t

for i = 1, 2 are vectors in D then from the definition of the Gaussian state follows
immediately that

〈ψ1,M(V , f)ψ2〉 = lim
n→∞

〈
ψ1,

2p+n∏
k=1

ωt(fk,n)ψ2

〉
(4.6)

exists and does not depend on the choice of the vectors (ei)i∈N (as long as they are
normal and orthogonal to each other) but depends only on their positions in the
monomial which are determined by the pair partition V . In the limit only those
pair partitions which contain the pairs (li, ri) ∈ V give a nonzero contribution.
Thus M(V , f) is well defined.
2) If the vectors (f(k))nk=1 are orthogonal on each other then ηf (V ′) = 0, thus
Ψ(V , f) =M(V , f).
3) The dense domain D is spanned by the vectors of the form Ψ(V , f)Ω̃t. Indeed
let ψ =

∏n
k=1 ωt(f(k))Ω̃t; then

ψ = Ψ(∅, f)Ω̃t +
∑

∅�=P ′⊂F

∑
d′∈P2(P ′)

ηf (V ′) ·Ψ(V ′, f �F\P ′)Ω̃t (4.7)

with F = {1, . . . , n}.
4) The choice for {1, . . . , 2p + n} as the underlying ordered set is not essential.
It is useful to think of Ψ(V , f) in terms of an arbitrary underlying finite ordered
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set X , where V ∈ P2(A), A ⊂ X , f : X \ A → K. For example we can consider
the set X = {0} and f(0) = h, then Ψ(∅, f) = ωt(h).
The relation betweenM(V , f) and Ψ(V , f) is similar to the one between moments
and cumulants.

Lemma 4.2 Let Ψ(V , f), M(V , f) be as in Definition 4.1. The equations (4.5)
can be inverted into:

Ψ(V , f) =M(V , f)+
∑

∅�=P ′⊂F

∑
V′∈P2(P ′)

(−1) |P ′|
2 ηf (V ′) ·M(V ∪V ′, f �F\P ′). (4.8)

Proof. Apply Möbius inversion formula.

Let X be an ordered set. Let {P, F} be a partition of X into disjoint sets and
consider a pair (V ∈ P2(P ), f : F → K). Then for X∗ as underlying set we define
the pair (V∗, f∗) where V∗ ∈ P2(X∗) contains the same pairs as V but with the
reversed order and f∗ = f .

Lemma 4.3 With the above notations the following relation holds:

Ψ(V , f)∗ = Ψ(V∗, f∗). (4.9)

Proof. Apply Lemma 4.2 and use M(V , f)∗ = M(V∗, f∗) which follows directly
from Definition 4.1.

For two ordered sets X and Y we define their concatenation X+Y as the disjoint
union with the original order on X and Y and with x < y for any x ∈ X, y ∈ Y .
If fX : X → K and fY : Y → K then we denote by fX ⊕ fY the function on X+Y
which restricts to fX and fY on X respectively Y . Finally if |X | = |Y | = m we
identify the subset of P2(X + Y ):

P2(X,Y ) := {{(x1, y1), . . . , (xm, ym)} : xi ∈ X, yi ∈ Y, i = 1, . . . ,m} (4.10)

Lemma 4.4 Let (Pi, Fi) be a disjoint partition of Xi and Vi ∈ P2(Pi),
fi : Fi → K for i = 1, 2. Then〈

Ψ(V1, f1)Ω̃t, Ψ(V2, f2)Ω̃t

〉
= δ|F1|,|F2|

∑
V∈P2(F∗

1 ,F2)

ηf∗1⊕f2(V) · t(V∗1 ∪ V2 ∪ V)

(4.11)
with the convention ηf∗1⊕f2(V) = 1 for F1 = F2 = ∅.
Proof. From Definitions 2.5, 4.1 it follows that〈
M(V1, f1)Ω̃t, M(V2, f2)Ω̃t

〉
=

∑
V∈P2(F∗

1 +F2)

ηf∗1⊕f2(V) · t(V∗1 ∪ V2 ∪ V). (4.12)
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We apply Lemma 4.2 and obtain:〈
Ψ(V1, f1)Ω̃t, Ψ(V2, f2)Ω̃t

〉
=
∑
V′

1,V′
2

(−1)
|P ′

1|+|P ′
2|

2 · ηf∗1⊕f2(V ′∗1 ∪ V ′2) ·

·
〈
M(V1 ∪ V ′1, f1 �F1\P ′

1
)Ω̃t, M(V2 ∪ V ′2, f2 �F2\P ′

2
)Ω̃t

〉
where the sum runs over all V ′i ∈ P2(P ′i ), P

′
i ⊂ Fi for i = 1, 2. Substituting in

the last expression the result from equation (4.12) it becomes:

∑
V′

1,V′
2

∑
V
(−1)

|P ′
1|+|P ′

2|
2 · ηf∗1⊕f2(V ′∗1 ∪ V ′2 ∪ V) · t((V1 ∪ V ′1)∗ ∪ V2 ∪ V ′2 ∪ V) (4.13)

with the second sum running over all V ∈ P2((F1 \ P ′1)∗ + (F2 \ P ′2)). We make
the notation Ṽ := V ′∗1 ∪ V ′2 ∪ V and by grouping together all terms containing Ṽ
the initial expression looks like:〈

Ψ(V1, f1)Ω̃t, Ψ(V2, f2)Ω̃t

〉
=
∑
Ṽ
m(Ṽ) · ηf∗1⊕f2(Ṽ) · t(V∗1 ∪ Ṽ ∪ V2) (4.14)

where the symbol m(Ṽ) stands for total contribution from the terms of the form

(−1)
|P ′

1|+|P ′
2|

2 . We calculate now m(Ṽ):

m(Ṽ) =
∑

V′
1,V′

2,V
(−1)|V′

1|+|V′
2|, (4.15)

this sum running over all V ∈ P2((F1 \ P ′1)∗ + (F2 \ P ′2)), V ′i ∈ P2(P ′i ), P
′
i ⊂ Fi

for i = 1, 2 with the constraint Ṽ = V ′∗1 ∪ V ′2 ∪ V .
Suppose that Ṽ ∈ P2(F ∗1 , F2), then V ′1 = V ′2 = ∅ and m(Ṽ) = 1. Otherwise Ṽ can
be written in a unique way as

Ṽ = Ṽ∗1 ∪ Ṽc ∪ Ṽ2 (4.16)

where Ṽi ∈ P2(P̃i), ∅ �= P̃i ⊂ Xi for i = 1, 2 and Ṽc ∈ P2((X1 \ P̃1)∗, X2 \ P̃2).
Then one has the inclusions V ′i ⊂ Ṽi for i = 1, 2 and Vc ⊂ V . The calculation of
m(Ṽ) reduces then to

m(Ṽ) =
∑

V′
1⊂Ṽ1,V′

2⊂Ṽ2

(−1)|V′
1|+|V′

2| = (1− 1)|Ṽ1|+|Ṽ2| = 0. (4.17)

In conclusion〈
Ψ(V1, f1)Ω̃t, Ψ(V2, f2)Ω̃t

〉
=

∑
Ṽ∈P2(F∗

1 ,F2)

ηf∗1⊕f2(Ṽ) · t(V∗1 ∪ V2 ∪ Ṽ) (4.18)
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A similar result holds for algebras of creation and annihilation operators.
Suppose that t is a function (not necessarily positive definite) on pair partitions.
Let P, F,V , f be as in Definition 4.1 and define in the representation space Ft(KC)
the vectors

ψ(V , f) =
2p+n∏
k=1

a�k

t (fk))Ωt (4.19)

with a�k(fk) = a∗(f(k)) for k ∈ F , a�li (fli) = (a�ri (fri))∗ = a(gi) for i = 1, . . . , p
and (gi)i=1,...,p a set of normalized vectors, orthogonal to each other and to the
vectors (f(k))nk=1.

Lemma 4.5 Let t be a function on pair partitions. Then

〈ψ(V1, f1), ψ(V2, f2)〉Ft(KC)
=

∑
V∈P2(F∗

1 ,F2)

ηf∗1⊕f2(V) · t(V∗1 ∪ V2 ∪ V) (4.20)

Proof. The equation follows then directly from Definition 2.4.

Now we are ready for the main result of this section.

Theorem 4.6 Let t be a function on pair partitions. If ρ̃t is a Gaussian state
on A(K) for any real Hilbert space K then ρt is a Fock state on C(KC).

Proof. Suppose that ρt is not a Fock state. Then in the representation space
Ft(KC) there exists a vector of the form

ψ =
m∑
a=1

ca · ψ(Va, fa) (4.21)

with all fa taking values in the real subspace K of KC and ca ∈ C, such that
〈ψ, ψ〉 < 0. But from lemmas 4.4 and 4.5 it results that
‖∑m

a=1 ca · Ψ(Va, fa)Ω̃t‖2 < 0 which is a contradiction. Thus ρt is a positive
functional and t is a positive definite function on pair partitions.

From Lemmas 4.2 and 4.3 we conclude that the generalisedWick products Ψ(V , f)
acting on Ft(K) form a ∗-algebra of operators which contains πt(A(K)) and will
be denoted by Wt(K). Let us first note that Theorem 4.6 implies that the
representations of Wt(K) on Ft(KC) and F̃t(K) are unitarily equivalent, thus:

Corollary 4.7 The vacuum vector Ωt is cyclic for the ∗-algebra Wt(K) for any
real Hilbert space K.
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5 Second Quantisation

This section is dedicated to the description of functorial properties of the gener-
alised Brownian motion which go by the name of second quantisation and appear
at two different levels depending on the categories with which we work.
LetH, H′ be Hilbert spaces and T a contraction fromH to H′. Define the second
quantisation of T at the Hilbert space level by

Ft(T ) : Ft(H) → Ft(H′)
v ⊗s h0 ⊗ . . .⊗ hn−1 �→ v ⊗s Th0 ⊗ . . .⊗ Thn−1 (5.1)

for all v ∈ Vn, hi ∈ H when n ≥ 1, and equal to the identity on V0. Clearly
Ft(T ) is a contraction, satisfies the equation Ft(T1) · Ft(T2) = Ft(T1 · T2) and
for T unitary it coincides with the operator defined in the equations (2.23) and
(2.24).

Definition 5.1 We call Ft the functor of second quantisation at the Hilbert space
level .

Lemma 5.2 Let ψ(V , f) as defined in equation (4.19). Then

Ft(T )ψ(V , f) = ψ(V , T ◦ f). (5.2)

Proof. We use the representation χt of the ∗-semigroup of broken pair partitions
BP2(∞) with respect to the state t̂ (see equation 3.7). Let {F, P} be a partition
of {1, . . . , 2p + n} and V ∈ P2(P ), f : F → H. Then using (4.19) and the
equations (2.13, 2.14) we obtain

ψ(V , f) = χt(Ṽ)ξ ⊗s

⊗
k∈F

f(k) (5.3)

for Ṽ ∈ BPn,0
2 the diagram with the set of pairs V and n legs to the left which

do not intersect each other.

There is however a more interesting notion of second quantisation.

Definition 5.3 [42] i) The category of non-commutative probability spaces has
as objects pairs (A, ρA) of von Neumann algebras and normal states and as
morphisms between two objects (A, ρA) and (B, ρB) all completely positive maps
T : A → B such that T (1A) = 1A and ρB(Tx) = ρA(x) for all x ∈ A.
ii) A functor Γ from the category of (real) Hilbert spaces with contractions to the
category of non-commutative probability spaces is called functor of white noise
if Γ({0}) = C where {0} stands for the zero dimensional Hilbert space.
In some cases we will ask for the following continuity requirement

w−lim
n→∞

Γ(Tn)(X) = Γ(T )(X), (5.4)

for any sequence of contractions Tn : K → K′ converging weakly to T .
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For completeness we include the following standard result.

Proposition 5.4 If Γ is a functor of white noise then Γ(T ) is an injective ∗-
homomorphism (automorphism) if T is an (invertible) isometry , and Γ(P ) is a
conditional expectation if P is an orthogonal projection.

Proof. For separating vacuum the proof has been given in [41]. Here we do not
assume this property.
1. Let O : K → K′ be an orthogonal operator and X ∈ Γ(K). As Γ(O∗) and
Γ(O) are completely positive we have the inequalities

Γ(O∗)(Γ(O)(X∗) · Γ(O)(X)) ≥ Γ(O∗O)(X∗) · Γ(O∗O)(X) = X∗X (5.5)

and
Γ(O)(X∗)Γ(O)(X) ≤ Γ(O)(X∗X) (5.6)

which by applying the positive operator Γ(O∗) becomes

Γ(O∗)(Γ(O)(X∗) · Γ(O)(X)) ≤ Γ(O∗O)(X∗X) = X∗X (5.7)

From (5.5, 5.7) we get Γ(O)(X∗) · Γ(O)(X) = Γ(O)(X∗X) and by repeating the
argument for X + Y and X + iY we obtain that Γ(O) is a ∗-isomorphism.
2. Let K be a real Hilbert space, I : K → K′ an isometry and P = II∗ orthogonal
projection. Then Γ(P )Γ(P ) = Γ(P ) which is thus a norm one projection, and
conditional expectation [63]. The map Γ(I) is injective as Γ(I∗)Γ(I) = idΓ(K) and
its image is Γ(P )Γ(K′). Indeed we have Γ(P )Γ(I)(X) = Γ(I)(X) and Γ(P )(Y ) =
Γ(I)Γ(I∗)(Y ). This means that Γ(I) is bijective between Γ(K) and Γ(P )Γ(K′),
and by a similar argument to that used in step 1 we obtain that Γ(I) is a ∗-
homomorphism.

Corollary 5.5 If Γ is a functor of second quantisation such that condition 5.4
holds. Then for any real Hilbert space H and any infinite dimensional real Hilbert
space K the algebras Γ(H ⊕ K)O(K) and Γ(H) are isomorphic , in particular
Γ(K)O(K) = C1.

Proof. We can choose K = <2(Z). Let S be the right shift on <2(Z) and O = 1⊕S
orthogonal operator on H ⊕ K. By taking the limit of On for n → ∞, one can
obtain that Γ(H ⊕ K)O(K) is isomorphic with Γ(I)Γ(H) where I is the natural
isometry from H to H⊕K. Thus Γ(H⊕K)O(K) 2 Γ(H).

After these general considerations we come back to our construction from the
previous section: for a fixed positive definite function t we have associated to each
Hilbert space K an algebra of fields πt(A(K)) and an algebra of Wick products
Wt(K) which is in general larger that the previous one, both acting on Ft(KC),
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and a positive functional 〈Ωt, ·Ωt〉 on these algebras. We would like to transform
this correspondences into functors of white noise. The natural way to do this
for πt(A(K)) is to construct the von Neumann algebra generated by the spectral
projections of the selfadjoint field operators ωt(f) for all f ∈ K. However these
operators are in general only symmetric and, unless bounded, one has to make
sure that they are essentially selfadjoint. Let us suppose for the moment that
this is the case. In the case of Wt(K) we will look for simplicity only at the cases
where all Wick products are bounded. Then we identify the following candidates
for the image objects under functors of white noise associated to t:

1) Γt : K �→ (Γt(K), 〈Ωt, ·Ωt〉) where Γt(K) is the von Neumann algebra gener-
ated by all the spectral projections of the (closed) field operators ωt(f) acting
on Ft(KC) for all f ∈ K.
2) Γ∞t : K �→ (Γ∞t (K), 〈Ωt, ·Ωt〉) where Γ∞t (K) is the von Neumann subalgebra of
Γt(K⊕<2(Z)) consisting of operators which commute with the unitaries Ft(1⊕O)
for all O ∈ O(<2(Z)), i.e.

Γ∞t (K) := Γt(K ⊕ <2(Z))O(82(Z)). (5.8)

3) ∆t : K �→ (∆t(K), 〈Ωt, ·Ωt〉) where ∆t(K) is the von Neumann algebra gener-
ated by the Wick products Ψ(V , f) in Wt(K ⊕ <2(Z)) for which Im f ⊂ K.

In the cases known so far − the gaussian functor [53], the free white noise [65]
and the q-deformed Brownian motion [9] − the three definitions are equivalent.
This is due to the fact that the vacuum state is faithful and the algebra of Wick
products coincide with that of the fields. This will be clear later in this section.
For a general treatment it appears however that the last two choices are more
appropriate. For any orthogonal operator O : K → K′, the natural choice for
Γ∞t (O) is

Γ∞t (O)(X) = Ft(O ⊕ 1)XFt(O ⊕ 1)∗ (5.9)

where X ∈ Γ∞t (K), and similarly for ∆t(O). Our task is now to find for which
functions t one can construct such von Neumann algebras, i.e. the field operators
are selfadjoint, and moreover the map K → Γ∞t (K) can be enriched with the
morphisms

Γ∞t (T ) :
(
Γ∞t (K), 〈Ωt, ·Ωt〉

)
→
(
Γ∞t (K′), 〈Ωt, ·Ωt〉

)
for all contractions T : K → K′ such that Γ∞t is a functor of white noise. Again,
the same question for ∆t.

Definition 5.6 A functor Γ∞t (or ∆t) with the above properties will be called
second quantisation at algebraic level and the completely positive map Γ∞t (T )
(respectively ∆t), the second quantisation of the contraction T .
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The existence of the second quantisation at algebraic level turns out to be
connected to a property of the functions on pair partitions.

Definition 5.7 [13] A function t on pair partitions is called multiplicative if for
all k, l, n ∈ N with 0 ≤ k < l ≤ n and all V1 ∈ P2({1, . . . , k, l + 1, . . . , n}) and
V2 ∈ P2({k + 1, . . . , l}) we have

t(V1 ∪ V2) = t(V1) · t(V2). (5.10)

Lemma 5.8 Let t be a positive definite function on pair partitions and suppose
that there exists a functor of second quantisation Γ∞t or ∆t . Then t is multi-
plicative.

Proof. Let K = <2(Z) ⊕ <2(Z) with the two projections P1 and P2 on the <2(Z)
subspaces. Let V1 ∪ V2 be a pair partition as in Definition 5.7. We consider a
monomial of fields M(V1 ∪ V2) = Ml,1 ·M2 ·Mr,1 containing |V1|+ |V2| pairs of
different colors arranged according to the pair partition V1∪V2 and such that the
colors for the pairs in V1 belong to the first <2(Z) in K, and those for the pairs
in V2 belong to the second term. Then using the fact that Γ∞t (0)(·) = ρt(·)1 we
have:

t(V1 ∪ V2)1 = Γ∞t (0)(M(V1 ∪ V2)) = Γ∞t (P1P2)(M(V1 ∪ V2)) (5.11)
= Γ∞t (P2)(Ml,1 Γ∞t (P1)(M2) Mr,1) = t(V1)t(V2)1. (5.12)

All this holds for ∆t as well.

Lemma 5.9 Let t be multiplicative positive definite function. Then the operator
j := χt(d0) defined in Theorem 3.2 is an isometry.

Proof. We have

〈χt(d1)ξ, j∗jχt(d1)ξ〉 = t̂(d∗1 · p · d2) = t̂(d∗1d2) · 1 = 〈χt(d1)ξ, χt(d1)ξ〉
where p = d∗0d0 is the diagram consisting of one pair and t(p) = 1 by the
normalization convention in the definition of t.

Proposition 5.10 Let t be multiplicative positive definite function and ψk ∈
F (k)

t (K) a k-particles vector. Then

‖ωt(f1) . . . ωt(fn)ψk‖ ≤ 2
n
2
√
(k + 1) . . . (k + n)‖ψk‖

n∏
i=1

‖fi‖ (5.13)

and ωt(f) is essentially selfadjoint for all f ∈ K.
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Proof. Let l(f) be the creation operator on the full Fock space over K and jn the
restriction to Vn of the isometry j. The main estimates are

‖a(f)ψk‖2 =
1

(k − 1)!
‖j∗k−1 ⊗ l∗(f)ψk‖2Vk−1⊗K⊗k−1 ≤

≤ k!
(k − 1)!

‖f‖2‖ψk‖2 = k‖f‖2‖ψk‖2, (5.14)

and similarly
‖a∗(f)ψk‖2 ≤ (k + 1)‖f‖2‖ψk‖2. (5.15)

This gives the same result as in the case of the symmetric Fock space (Theorem
X.41 in [52]):

‖a�t(f1) . . . a�t(fn)ψk‖ ≤
√
(k + 1) . . . (k + n)‖ψk‖

n∏
i=1

‖fi‖. (5.16)

In particular the vectors with finite number of particles form a dense set D of
analytic vectors for the field operators ωt(f). By Nelson’s analytic vector theorem
we conclude that ωt(f) is essentially selfadjoint.

From now we will denote by the same symbol the closure of ωt(f). We are now
in the position to construct the von Neumann algebras Γ∞t (K) as described in 5.8
for any multiplicative positive definite t. If O : K → K′ is an orthogonal operator
between two Hilbert spaces we define its second quantisation as in equation 5.9.

Corollary 5.11 Let ψk ∈ Ft(K) be a k−particles vector and f1, . . . , fn ∈ K.
Then

n∏
p=1

eiωt(fp)ψk =
∞∑

m1,...,mn=0

(iωt(f1))m1 . . . (iωt(fn))mn

m1! . . .mn!
ψk. (5.17)

Proof. Using the previous proposition we get

∞∑
m1,...,mn=0

||ωt(f1)m1 . . . ωt(fn)mnψk||
m1! . . .mn!

≤

||ψk||√
k!

∞∑
m1,...,mp=0

||f1||m1 . . . ||fn||mn

m1! . . .mn!

√
(k +m1 + · · ·+mn)! <∞.

This means that all vectors of the form
∏n

p=1 e
iωt(fp)ψk are analytic for the field

operators. In particular one can expand as in 5.17. We denote the space of linear
combinations of such ‘exponential vectors’ by De.
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Lemma 5.12 Let K,K′ be real Hilbert spaces and I : K → K′ an isometry.
Then there exists an injective ∗-homomorphism Γ∞t (I) from Γ∞t (K) to Γ∞t (K′),
and similarly for ∆t.

Proof. There exists an orthogonal operator OI : K ⊕ <2(Z) → K′ ⊕ <2(Z) such
that the restriction to K coincides with I. Then the map

Γt(K ⊕ <2(Z)) ' X �→ Ft(OI)XFt(O∗I ) ∈ Γt(K′ ⊕ <2(Z)) (5.18)

sends an element X ∈ Γ∞t (K) into Γ∞t (K′) when restricted to the subalgebra
Γ∞t (K) and the restriction does not depend on the choice of the orthogonal OI .
The Wick products in ∆(K) have the same behavior.

In the case of the algebras ∆t(K) the coisometries P act ‘good’ as well:

∆t(P ) : Ψ(V , f) �→ Ψ(V , P ◦ f) = Ft(P )Ψ(V , f)Ft(P )∗ (5.19)

as it can be checked directly, this being in fact one of the reasons why we consider
the Wick products as building blocks of the algebra of fields. As any contraction
can be written as product of a coisometry and an isometry we obtain that for
any T : K → K′

∆t(T ) : Ψ(V , f) �→ Ψ(V , T ◦ f) (5.20)

is a well defined completely positive map from ∆t(K) to ∆t(K′) and has the
functorial properties. Moreover by definition ∆t({0}) = C for multiplicative t
and thus ∆t is a functor of white noise. This ends our discussion of the functor
∆t which will reappear in the following chapter, but we remind the reader that
we have restricted ourselves to the case of bounded Wick products. We believe
that the same can be done for the unbounded case with more care when dealing
with affiliated Wick products.

We return now to the case of Γ∞t .

Proposition 5.13 Let P : K → K′ be a coisometry i.e. PP ∗ = 1K′ and t a
positive definite multiplicative function. Then

Γ∞t (P ) : X �→ Ft(P ⊕ 1)XFt(P ⊕ 1)∗ (5.21)

maps Γ∞t (K) onto Γ∞t (K′).
Proof. We denote by I the adjoint of P . We fix an orthonormal basis (ei)∞i=1 in
K′ ⊕ <2(Z) and (fj)Mj=1 in K & (IK′). Let X =

∏n
p=1 e

iλpωt(gp) be an element of
Γt(K ⊕ <2(Z)) where each gp is either an (I ⊕ 1)ei or an fj. We will prove that
Ft(P ⊕ 1)XFt(P ⊕ 1)∗ belongs to Γt(K′ ⊕ <2(Z)). Let

Y = Γt(OP )(X) =
n∏

p=1

eiλpωt(OP gp) ∈ Γt(K′ ⊕ <2(Z)) (5.22)
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where OP : K⊕ <2(Z)→ K′ ⊕ <2(Z) is an orthogonal operator which satisfies the
condition that OP gp = (P ⊕ 1)gp for all gp ∈ IK′ ⊕ <2(Z). We denote by HX

the finite dimensional subspace of K′ ⊕ <2(Z) spanned by the vectors (P ⊕ 1)gp
for 1 ≤ p ≤ n. Let T be an operator which is of the form 1HX ⊕ S with S an
arbitrary orthogonal operator which acts as a bilateral shift on the orthonormal
basis of the orthogonal complement of HX in K′ ⊕ <2(Z). We claim that

w−lim
l→∞

Γt(T l)(Y ) = Ft(P ⊕ 1)XFt(P ⊕ 1)∗. (5.23)

It is sufficient to check this for expectation values with respect to vectors of
the form ψ(V , e) = Ψ(V , e)Ωt where the components of e are elements of the
basis (ei)∞i=1. The linear span of such vectors forms the dense domain D ⊂
Ft(K′ ⊕ <2(Z)). We apply now corollary 5.11 and find that for l large enough:

〈
ψ(V , e),Γt(T l)(Y )ψ(V , e)〉 =

〈
ψ(V , e),

n∏
p=1

eiλpωt(T
lOP gp)ψ(V , e)

〉
=

∞∑
m1,...,mn=0

〈
ψ(V , e),

n∏
q=1

(iλqωt(T lOP gq))mq

mq!
ψ(V , e)

〉
=

∞∑
m1,...,mn=0

〈
ψ(V , Ie),

n∏
q=1

(iλqωt(gq))mq

mq!
ψ(V , Ie)

〉
=

= 〈ψ(V , e), Ft(P ⊕ 1)XFt(P ⊕ 1)∗ψ(V , e)〉 .

Indeed the pairing prescription of the fields of the same color insures that the
terms in the two sums are equal one by one if we choose l such that no vector
T lOP gp in the orthogonal complement of HX coincides with a component of
e. As the span of the operators of the form

∏n
p=1 e

iλpωt(gp) is weakly dense in
Γt(K ⊕ <2(Z)) we can extend the map

Γt(P ⊕ 1)(X) = Ft(P ⊕ 1)XFt(P ⊕ 1)∗ (5.24)

to the whole algebra such that Γt(P ⊕ 1)(X) ∈ Γt(K′ ⊕ <2(Z)). Now, if X
commutes with Ft(1 ⊕ O) acting on Ft(K ⊕ <2(Z)) for O ∈ O(<2(Z)) then it is
easy to see that Γt(P⊕1)(X) commutes with Ft(1⊕O) acting on Ft(K′⊕<2(Z)).
In other words the restriction Γ∞t (P ) of Γt(P ⊕ 1) to Γ∞t (K) has the desired
property:

Γ∞t (P ) : Γ∞t (K)→ Γ∞t (K′). (5.25)

Corollary 5.14 Let I : K → K′ be an isometry. Then Γ∞t (I∗)Γ∞t (I) = idΓ∞
t (K).

If I ′ : K′ → K′′ is another isometry then Γ∞t (I ′)Γ∞t (I) = Γ∞t (I ′I).
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Proof. The map Γ∞t (I∗)Γ∞t (I) is implemented by

Γ∞t (I∗)Γ∞t (I) : X → Ft((I∗ ⊕ 1)OI)XFt((I∗ ⊕ 1)OI)∗. (5.26)

But (I∗ ⊕ 1)OI = 1 ⊕Q where Q is a coisometry on <2(Z). Any such operator
on <2(Z) can be obtained as a weak limit of orthogonal operators. The functor
Ft respects weak limits and as X commutes with all Ft(1⊕O) for O orthogonal
operator, it also commutes with Ft(1⊕Q), thus we get

Γ∞t (I∗)Γ∞t (I)(X) = Ft(1⊕Q)XFt(1⊕Q)∗ = X. (5.27)

The other identity follows directly from the definition of Γ∞t (I).

Any contraction T : K1 → K2 can be written as T = PI where I : K1 → K is
an isometry and P : K → K2 is a coisometry. This decomposition is not unique.
We define the second quantisation of T by using the already constructed Γ∞t (I)
and Γ∞t (P ):

Γ∞t (T ) := Γ∞t (P )Γ∞t (I) : Γ∞t (K1)→ Γ∞t (K2). (5.28)

We will verify that Γ∞t (T ) does not depend on the choice of I and P . Firstly
we note that we can restrict only to ‘minimal’ K, that is, K is spanned by IK1

and P ∗K2. If this is not the case then we make the decomposition I = I2I1 and
P = P2I∗2 such that T = P2I1 is minimal and we use the previous corollary,

Γ∞t (T ) = Γ∞t (P )Γ∞t (I) = Γ∞t (P2)Γ∞t (I∗2 )Γ
∞
t (I2)Γ∞t (I1) = Γ∞t (P2)Γ∞t (I1).

(5.29)
Secondly, we compare two minimal decompositions T = PI = P ′I ′ with I ′ :
K1 → K′. By minimality, there exists an orthogonal O from K′ and K defined
by

O : I ′f �→ If, f ∈ K1

O : P ′∗g �→ P ∗g, g ∈ K2.

Then PI = P ′O∗OI ′ and by applying again the previous corollary we get
Γ∞t (P )Γ∞t (I) = Γ∞t (P ′)Γ∞t (I ′).

Lemma 5.15 For any contractions T1 : K1 → K2 and T2 : K2 → K3 we have
Γ∞t (T2)Γ∞t (T1) = Γ∞t (T2T1).

Proof. The completely positive maps Γ∞t (T1) and Γ∞t (T2) are implemented by

Γ∞t (Ti) : X �→ Ft(Pi)XFt(Pi)∗ (5.30)

with Pi : Ki ⊕ <2(Z)→ Ki+1 ⊕ <2(Z) are coisometries with the matrix expression

Pi =
(
Ti Ai

0 P ′i

)
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for i = 1, 2. Their product P2P1 is a coisometry with matrix expression of the
same form

P2P1 =
(
T2T1 T2A1 +A2P

′
1

0 P ′2P
′
1

)
.

This implies that Γ∞t (T2T1) = Γ∞t (T2)Γ∞t (T1).

By putting together all the results of this section we obtain the theorem.

Theorem 5.16 Let t be a positive definite multiplicative function. Then there
exists a functor Γ∞t from real Hilbert spaces to non-commutative probability spaces.
This is a functor of second quantisation if and only if ρt is faithful for Γt(<2R(Z)).

Proof. From the previous results we conclude that Γ∞t is a functor from real
Hilbert spaces to non-commutative probability spaces.
The upgrading to functor of white noise requires additionally Γ∞t ({0}) = C which
means that Γt(<2R(Z))

O(82
R
(Z)) = C. If the vacuum is a faithful state then indeed

there can be no nontrivial vector, (and element of the von Neumann algebra)
which is invariant under all Ft(O), (respectively Γ∞t (O)).

LetM denote the von Neumann algebra generated by the unitaries {Γ∞t ({0})}
for all O ∈ O(<2

R
(Z)). Then Γt(<2R(Z))∩M′ = C is equivalent to Γt(<2R(Z))

′∨M =
B(Ft(<2(Z))). If the vacuum state is not faithful then Ωt is not cyclic for
Γt(<2R(Z))

′. This algebra has an obvious automorphism group Γ′t(O) which im-
plies that the vacuum is not cyclic for Γt(<2R(Z))

′ ∨M.

In the end we show that for faithful vacuum states there is essentially only
one associated functor of second quantisation and we make the connection with
the known cases of second quantisation arising from the q-deformed commutation
relations algebra.

Corollary 5.17 Let t be a positive definite multiplicative function such that the
vector Ωt is cyclic and separating for Γt(<2(Z)). Then we have the following:

1) the cyclic representation of Γ∞t (K) with respect to Ωt is faithful and the sub-
space of Ft(K ⊕ <2(Z)) spanned by Γ∞t (K)Ωt is isomorphic to Ft(K). In this
representation the second quantisation of a contraction T : K1 → K2 is the com-
pletely positive map Γ∞t (T ) from Γ∞t (K1) to Γ∞t (K2) such that

Γ∞t (T )(X)Ωt = Ft(T )XΩt (5.31)

for X ∈ Γ∞t (K1).

2) if the field operators are bounded then Γ∞t coincides with ∆t.
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Proof. If X ∈ Γ∞t (K) then ψ = XΩt is left invariant by Ft(1 ⊕ O) for all
O ∈ O(<2(Z)). This means that ψ is orthogonal on all vectors of the form
Ψ(V , e)Ωt where e takes values in an orthogonal basis of K ⊕ <2(Z) such that
at least one of the components is an element of the basis in <2(Z). By corollary
4.7 we conclude that the cyclic space of Γ∞t (K) is (up to a unitary isomorphism)
Ft(K) ⊂ Ft(K ⊕ <2(Z)).

It is not difficult to prove that on basis of the faithfulness of the vacuum we have
Γ∞t (<2

R
(Z)) 2 Γt(<2R(Z)). For finite dimensional K it can happen that Γt(K) is

strictly included in Γ∞t (K), and this this the reason why Γ∞ is the right defini-
tion of the functor of white noise. In the q-deformed commutation relations the
two algebras coincide, but this should be seen as exceptional rather than the rule.

If the fields are bounded then ∆t is functor of white noise and on the other hand
∆t(<2R) 2 Γt(<2R(Z)) by construction, and the same hold for finite dimensional
Hilbert spaces K. Thus ∆t and Γ∞t coincide.

6 An Example

In [13] and in [28] (chapter II of this thesis) it has been proved that for all
0 ≤ q ≤ 1, the following function on pair partitions is positive definite:

tq(V) = q|V|−|B(V)| (6.1)

where |B(V)| is the number of blocks of the pair partition V . A block is a
subpartition whose graphical representation is connected and does not inter-
sect other pairs from the rest of the partition. The corresponding vacuum
state ρtq (·) =

〈
Ωtq , ·Ωtq

〉
is tracial for any von Neumann algebra Γtq(K) as-

sociated to a real Hilbert space K. Indeed for any pair partition V we have
tq(V) =

〈
Ωtq ,MVΩtq

〉
with MV a monomial of fields containing |V| pairs of

different colors arranged according to the pair partition V . The trace property
for the vacuum is equivalent with the invariance under circular permutations of
the fields in the monomial MV which is equivalent to the invariance of tq under
transformations described as follows:

P2({1, . . . , 2r}) ' V �→ Ṽ ∈ P2({0, . . . , 2r − 1}) (6.2)
{p1, . . . , pr−1} ∪ {(l, 2r)} �→ {(0, l)} ∪ {p1, . . . , pr−1}. (6.3)

Under such transformations the number of blocks remains unchanged thus tq(V)
is equal to tq(Ṽ) and ρtq is tracial. Thus the assumption of Corollary 5.17 is
satisfied and we have second quantisation at algebraic level.
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The version of tq for −1 ≤ q ≤ 0 is tq := t−qt−1 where

t−1(V) = (−1)|I(V)| (6.4)

and |I(V)| is the number of crossings of V . The operators ωtq(f) are bounded
for −1 ≤ q ≤ 0 [13]. Thus by corollary 5.17 the generalised Wick products form
a strongly dense subalgebra of Γ∞tq

(K), faithfully represented on Ft(K).
In the rest of this section we want to investigate the type of the von Neumann
algebras Γtq (K) for dim K = ∞ and −1 ≤ q ≤ 0. Inspired by [9], we will first
find a sufficient condition for Γt(K) to be a type II1 factor, and we will apply it
to tq.
Let t be a multiplicative positive definite function such that ρt is trace state
on Γt(K) for K infinite dimensional and such that ωt(f) is bounded. Let I be
the natural isometry from K to K ⊕ R, and e0 a unit vector in the orthogonal
complement of its image. The function t being multiplicative implies that the
map

φ : Ft(K)→ Ft(K ⊕ R) (6.5)

defined by φ = ωt(e0)Ft(I) is an isometry.

Definition 6.1 Let (P,L,R) be a disjoint partition of the ordered set
{1, . . . , 2n+l+r} and d = (V , fl, fr) an element of the ∗-semigroup of broken pair
partitions with V ∈ P2(P ), fl : L→ {1, . . . l} the left legs and fr : R→ {1, . . . r}
the right legs. We denote by d := (V , fl, fr) the element obtained by adding to
V one pair which embraces all other pairs

V := V ∪ {(0, 2n+ l + r + 1)} ∈ P2({0} ∪ P ∪ {2n+ l + r + 1}). (6.6)

Then the map

Φ(·) := Γt(I∗)(ωt(e0)Γt(I)(·)ωt(e0)) = φ∗Γt(I)(·)φ (6.7)

has the following action on the generalised Wick products:

Φ(Ψ(V , f)) = Ψ(V, f) (6.8)

which on the level of von Neumann algebras gives the completely positive con-
traction from Γt(K) to itself. We fix an orthonormal basis (en)∞n=1 in K. Then
by direct computation one can check that:

Φ(X) = w−lim
n→∞

ωt(en)Xωt(en). (6.9)

Let now τ be an arbitrary tracial normal state on Γt(K). Then using the fact
that ωt(en)2 → 1 weakly as n→∞, we get:

τ(Φ(X)) = lim
n→∞ τ(ωt(en)Xωt(en)) = lim

n→∞ τ(ωt(en)2X) = τ(X). (6.10)
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Suppose now that
w−lim
k→∞

Φk(X) = ρt(X)1 (6.11)

for all X ∈ Γt(K) which by the faithfulness of the vacuum state is equivalent to
limk→∞ Φk(X)Ωt = ρt(X)Ωt. Then by equation (6.10) we conclude that ρt is
the only trace state on Γt(K) which is thus a type II1 factor. Let us take a closer
look at the contraction

Θ : XΩt �→ Φ(X)Ωt. (6.12)

From equation (6.8) the operator Θ commutes with the orthogonal projectors on
the spaces with definite ‘occupation numbers’ Ft(n1, . . . , nk) (see 2.31). Thus

Θ : v ⊗s e(n) �→ θ(v)⊗s e(n) (6.13)

where
e(n) := e1 ⊗ . . .⊗ e1︸ ︷︷ ︸

n1times

⊗ . . .⊗ ek ⊗ . . .⊗ ek︸ ︷︷ ︸
nktimes

, (6.14)

v ∈ Vn and θ : V → V is the linear operator defined by

θ : χt(d)ξ �→ χt(d)ξ, (d ∈ BP2(∞)). (6.15)

Lemma 6.2 Let t be a multiplicative positive definite function such that ρt is
trace. Then the operator θ : V → V defined by 6.15 is a selfadjoint contraction.

Proof. Let d1, d2 ∈ BP(n,0)
2 be two diagrams with n left legs and no right legs.

Then
〈χt(d1)ξ, θ χt(d2)ξ〉V = t̂(d∗1 · d2). (6.16)

But if ρt is a trace then
t̂(d∗1 · d2) = t̂(d1∗ · d2) (6.17)

which implies that

〈χt(d1)ξ, θ χt(d2)ξ〉V = 〈 θ χt(d1)ξ, χt(d2)ξ〉V . (6.18)

Thus θ is a selfadjoint contraction.

Theorem 6.3 If ξ is the only eigenvector of θ with eigenvalue 1 then Γt(K) is
a II1 factor for any infinite dimensional real Hilbert space K.

Proof. The operator θ is a selfadjoint contraction, thus

w−lim
k→∞

θk = Pξ (6.19)

where Pξ is the projection on the subspace Cξ. This implies 6.11 and thus Γt(K)
is a II1 factor .
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Corollary 6.4 Let K be an infinite dimensional real Hilbert space and tq the
positive definite function for −1 < q ≤ 0. Then the von Neumann algebra Γtq(K)
is a type II1 factor.

Proof. Let d1, d2 ∈ BP(n,0)
2 be two diagrams with n ≥ 1 left legs and no right

legs. Then 〈
χtq (d1)ξ, θ

2 χtq (d2)ξ
〉
V
= t̂q(d1∗ · d2) = q(−1)n · t̂q(d∗1 · d2)

= q(−1)n · 〈χtq(d1)ξ, θ χtq(d2)ξ
〉
V
. (6.20)

where we have used the selfadjointness of θ in the first step and

|B(d1∗ · d2)| = |B(d∗1 · d2)|,
|d1∗ · d2| = |d∗1 · d2|+ 1

in the second equality. Thus the restriction of θ to V &Cξ has norm |q| < 1 and
we can apply Theorem 6.3.

Remark. The case 0 ≤ q < 1 is technically more difficult as the field operators
are unbounded.

If ρt is a faithful, multiplicative, but non-tracial state for Γt(K) then the oper-
ators φ,Φ,Θ, θ can still be defined in the same way. If moreover, ξ is the only
eigenvector with eigenvalue 1 of the operator θ, then by a similar argument it
can be shown that the algebra Γt(K) is a factor. Indeed if X is an element in the
center of Γt(K) then Φ(X) = w−limk→∞ ωt(en)2X = X . which contradicts the
assumption on θ. This factor cannot be of type II1 because the vacuum state
is not tracial. Using this observation one could in principle construct type III
factors for certain positive definite multiplicative functions on pair partitions.

Acknowledgements. The authors would like to thank Marek Bożejko and Roland
Speicher for stimulating discussions and remarks.
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ABSTRACT

The characters φα,β of the infinite symmetric group are extended to multiplicative
positive definite functions tα,β on pair partitions by using an explicit representa-
tion due to Veršik and Kerov. The von Neumann algebra Γα,β(K) generated by
the fields ωα,β(f) with f in an infinite dimensional real Hilbert space K is infi-
nite and the vacuum vector is not separating. For a family tN depending on an
integer N < −1 an ‘exclusion principle’ is found allowing at most |N | ‘identical
particles’ on the same state:

a(f)a∗(g) = 〈f, g〉1 +
1
N

dΓ(Tf,g).

The algebras ΓN (<2
R
(Z)) are type I∞ factors. Functors of white noise ∆N are

constructed and proved to be non-equivalent for different values of N .
3This chapter is based on reference [8].
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1 Introduction

The theory of non-commutative processes with ‘independent increments’ has been
the object of various investigations in quantum probability the most important
approaches being the Hudson-Parthasarathy calculus [50] based on tensor inde-
pendence, and Voiculescu’s free probability with its concept of free independence
[65].

A general theory of quantum white noise, Brownian motion and Markov pro-
cesses is developed by Köstler [38] in the spirit of Kümmerer’s approach to quan-
tum probability [42, 41, 39]. The white noise is described by a finite quantum
probability space of A0-valued random variables i.e., a von Neumann algebra
A, endowed with a tracial normal state ρ together with a subalgebra A0 and
the state preserving conditional expectation P0 from A to A0 [61]. The triple
(A, ρ,A0) is provided with a filtration of subalgebras AI of A, for all closed in-
tervals I of the time axis R. A group (St)t∈R of automorphisms of (A, ρ) acts as
a shift on the local algebras St(AI) = AI+t and lets A0 pointwise invariant. For
disjoint intervals I, J the local algebras AI and AJ are statistically independent
over A0 i.e., PI ◦ PJ = P0 a notion in which we recognize a commuting square
of von Neumann algebras [24]. The quantum Brownian motion is an additive
cocycle (Bt)t∈R with respect to the white noise (A, ρ, St,AI) over A0 that is, a
process which is adapted to the filtration A[0,t], satisfying Bs+t = Bt + St(Bs)
and certain continuity requirements in the Lp-norms (see definitions in chapter
3 of [38]).

A more functorial approach has been abstracted from the study of the algebra of
deformed or q-commutation relations [9, 10, 11, 21, 23, 26, 45, 67]. The selfadjoint
field operators ωq(f) := aq(f)+ a∗q(f) for f ∈ L2

R
(R+) have vacuum expectations

expressed as a sum over all possible partitions of the terms in the monomial into
pairs

ρq(ωq(f1) . . . ωq(fn)) =
∑

V∈P2(n)

tq(V)
∏

(k,l)∈V
〈fk, fl〉 (1.1)

where tq(V) = qcr(V) and cr(V) is the number of crossings of the pair partition
V . The classical Brownian motion is realized for q = 1 while the free Brownian
motion [65] for q = 0 by defining B(q)

t = ωq(χ[0,t]). Those functions t : P2(∞)→
C on pair partitions which give rise to a positive ‘gaussian’ functionals ρt on the
algebra of fields ω(f), are called positive definite [13]. In particular they restrict to
positive definite functions on the infinite symmetric group S(∞), by identifying
the permutations with certain pair partitions [13]. The representations with
respect to such functionals ρt are called generalised Brownian motions and are
the object of the papers [13, 55, 28, 27].

We regard the usual (symmetric) Fock space over a Hilbert space as an endo-
functor of the category of Hilbert spaces. This can be generalised to the analytic
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functors of Joyal [36] whose symmetries are determined by combinatorial ob-
jects like species of structures [35, 5]. In the previous two chapters it has been
observed that such generalised Fock spaces are the representation spaces of gen-
eralised Brownian motions. One can define creation and annihilation operators
a�(f) whose sums are the fields ω(f). This framework is described in section 2.

For positive definite functions which have a certain multiplicativity property,
it has been shown [27] (chapter III of this thesis) that the field operators are
selfadjoint and thus one can investigate the von Neumann algebras which they
generate as well as the existence of functors from the category of (real) Hilbert
spaces with contractions to the category of non-commutative probability spaces.

For tracial vacuum states ρt, the functor Γt of white noise constructed in chapter
III is a concrete realization of a quantum white noise in the sense of Köstler, if
we define A0 := C, A := Γt(L2(R)), AI 2 Γt(L2(I)) with St := Γ(st) where st is
the shift operator on L2(R). The Brownian motion is B(t)

s := ωt(χ[0,s]).

No example of function t is yet known such that the vacuum state ρt is faithful
but not tracial.

In this paper we treat a class of generalised Brownian motions for which the vac-
uum state is not faithful. They arise from the characters of the infinite symmetric
group S(∞). By the theorem of Thoma [62] any such character has the form

φα,β(σ) =
∏
m≥2

( ∞∑
i=1

αmi + (−1)m+1
∞∑
i=1

βmi

)ρm(σ)

where (αi)∞i=1 and (βi)∞i=1 are decreasing sequences of positive numbers with∑∞
i=1 αi +

∑∞
i=1 βi ≤ 1 and ρm(σ) is the number of cycles of length m in the

cycle decomposition of σ. An explicit construction of the representation of S(∞)
with respect to the positive definite function φα,β has been presented by Veršik
and Kerov in [64]. In section 3 we employ this representation to calculate the
expression of a multiplicative positive definite function on pair partitions tα,β
which extends φα,β . For an arbitrary pair partition V we have

tα,β(V) =
∏
m≥2

( ∞∑
i=1

αmi + (−1)m+1
∞∑
i=1

βmi

)ρm(V)
.

where ρm(V) is the number of cycles of length m in the pair partition V , the
cycle of a pair partition being a new combinatorial concept extending that from
permutations. For any real Hilbert space K we construct the von Neumann
algebra Γα,β(K) generated by selfadjoint field operators ωα,β(f) with f ∈ K and
investigate its properties by using the general theory developed in chapter III.
If the space K is infinite dimensional we find that Γα,β(K) is an infinite von
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Neumann algebra and the vacuum state is not faithful. This makes the object of
section 4.

In the last section we treat in more detail a particular case of positive definite
functions indexed by a natural number N < −1,

tN (V) =
(

1
N

)|V|−c(V)
,

where |V| is the number of pairs of V and c(V) the number of cycles. Alternatively
to the representation inspired from Veršik and Kerov, we use the technique of de-
formation of the inner product on the full Fock space known from the q-deformed
Brownian motion [9, 10, 11] and obtain an interesting example of relations be-
tween creation and annihilation operators:

aN (f)a∗N (g) = 〈f, g〉1− 1
|N |dΓ(Tf,g)

where the finite rank operator Tf,g acts as Tf,gh = 〈f, h〉 g. The differential
second quantisation operators dΓ(A) are defined similarly to their counterparts
in quantum field theory [53]. For f = g this implies that the number operator
Nf = dΓ(Tf,f ) counting the number of one-particle f -states is bounded by |N |,
an ‘exclusion principle’ which could have some interest also from the physics
point of view. The algebra ΓN(<2

R
(Z)) generated by the field operators ωN (f)

acting on FN (<2(Z)) contains all bounded operators on the Fock space.

From the functorial point of view a different algebra ∆N (K) generated by the so
called generalised Wick product operators Ψ(V , f) acting on FN (KC ⊕ <2(Z)) is
more interesting. For any contraction T : K → K′ between real Hilbert spaces
one can define its second quantisation, a vacuum state preserving completely
positive map ∆N (T ) between ∆N (K) and ∆N (K′). Altogether, ∆N is a functor
of white noise. For infinite dimensional K the von Neumann algebra ∆N (K) is
a discrete sum of type I∞ factors; for finite finite dimensional K, ∆N (K) is a
matrix algebra. In particular

∆N (R) =
N+1⊕
k=2

Mk(C),

implying that the functors ∆N are inequivalent for different values of N .

2 Theory of Generalised Brownian Motion

In this section we define the notion of generalised Brownian motion [9, 13, 10, 11],
and describe some results from [28], [27] (chapters II and III of this thesis).
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Definition 2.1 Let K be a real separable Hilbert space. The algebraA(K) is the
free unital ∗-algebra with generators ω(h) for all h ∈ K, divided by the relations:

ω(af + bg) = aω(f) + bω(g), ω(f) = ω(f)∗ (2.1)

for all f, g ∈ K and a, b ∈ R.

In this paper we will consider G.N.S.-like representations of such ∗-algebras with
respect to positive functionals called gaussian states. These states arise from a
non-commutative central limit theorem (Theorem 0 in [13]) and are described by
functions on pair partitions.

Definition 2.2 Let S be a finite ordered set with n elements. We denote by
P2(S) the set of pair partitions of S, that is V ∈ P2(S) if V consists of 1

2n
disjoint ordered pairs (l, r) with l < r having S as their reunion. The set of all
pair partitions is

P2(∞) :=
∞⋃
r=0

P2(2r). (2.2)

Note that P2(n) = ∅ if n is odd. We use the symbol t exclusively for functions
t : P2(∞)→ C. We will always choose the normalization t(p) = 1 for p the pair
partition containing only one pair.

Definition 2.3 A Gaussian state on A(K) is a positive normalized linear func-
tional ρt with moments

ρt(ω(f1) . . . ω(fn)) =
∑

V∈P2(n)

t(V)
∏

(k,l)∈V
〈fk, fl〉 (2.3)

for even n, and zero for odd n. A function t is called positive definite if ρt is a
Gaussian state.

Remark 2.4 If t is positive definite then its restriction to the pair partitions of
the form Vπ := {(i, 2n+ 1− π(i)) : i = 1, . . . , n)} where π ∈ S(n), is a positive
definite function on the symmetric group S(n) [13].

By analyzing the GNS representation associated to a Gaussian state ρt we have
generalised [28, 27] the notion of Fock space over KC in the following way.

Definition 2.5 Let V = (Vn)∞n=0 be a collection of Hilbert spaces such that each
Vn carries a unitary representation Un of the symmetric group S(n). Let H be a
(complex) Hilbert space. The V-Fock space over H is defined by

FV(H) :=
∞⊕
n=0

1
n!
Vn ⊗s H⊗n, (2.4)
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where ⊗s denotes the closed subspace of the tensor product Vn ⊗ H⊗n whose
orthogonal projection is

Pn =
1
n!

∑
τ∈S(n)

Un(τ) ⊗ Ũn(τ), (2.5)

and
Ũnf1 ⊗ . . .⊗ fn = fτ−1(1) ⊗ . . .⊗ fτ−1(n) (2.6)

for fi ∈ H. The factor 1
n! in 2.4 refers to the inner product on Vn⊗sH⊗n. We note

that FV is an endofunctor of the category of Hilbert spaces with contractions
called analytic functor [36]. We use the shorter notation v ⊗s (h1 ⊗ . . .⊗ hn) for
the vector n!Pn v ⊗ (h1 ⊗ . . .⊗ hn). Let T : H1 → H2 be a contraction between
Hilbert spaces. Then its second quantisation on the level of Hilbert spaces FV(T )
is defined by

FV(T ) : v ⊗s (h1 ⊗ . . .⊗ hn) �→ v ⊗s (Th1 ⊗ . . .⊗ Thn) (2.7)

for all v ∈ Vn, hi ∈ H when n ≥ 1, and equal to the identity on V0.

On FV(H) we define creation and annihilation operators whose domain consists
of vectors with ‘finite number of particles’. If ψn+1 ∈ Vn+1 ⊗s H⊗n+1 then
a(f)ψn+1 = (j∗n ⊗ r∗(f))ψn+1 where jn : Vn → Vn+1 are densely defined linear
maps having the intertwining property

jnUn(τ) = Un(ι(τ))jn (2.8)

for all τ ∈ S(n), and ι : S(n) ↪→ S(n+ 1) being the natural inclusion by keeping
the element n+ 1 fixed. The operator r(f) is the right creation operator on the
full Fock space in the notation of Voiculescu (see remark 2.6.7. in [65]).

The equation 2.8 insures that (j∗n ⊗ r∗(f))Pn+1 = Pn(j∗n ⊗ r∗(f))Pn+1. The
creation operator a∗(f) is the adjoint of a(f) and has the action

a∗(f) : v ⊗s (f1 ⊗ . . .⊗ fn) �→ (jnv)⊗s (f1 ⊗ . . .⊗ fn ⊗ h) (2.9)

for v ∈ Vn, fi ∈ H.
Remark. One can also use the left creation operator l(f) by choosing another
inclusion of S(n) into S(n+ 1).

Theorem 2.6 Let K be an infinite dimensional real Hilbert space and t positive
definite function on pair partitions. Then there exists a unique (up to unitary
equivalence) analytic functor V and densely defined linear maps jn : Vn → Vn+1

satisfying 2.8 such that the G.N.S. representation of A(K) w.r.t. ρt is unitarily
equivalent to the ∗-algebra of symmetric operators ω(f) := a(f)+a∗(f) for f ∈ K,
acting on the Hilbert space FV(KC). The state ρt is implemented by a unit vector
Ω ∈ V0.
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Remark. In chapter III we have shown how the spaces Vn and the maps jn arise
through the representation of the ∗-semigroup BP2(∞) of broken pair partitions,
with respect to the positive functional t̂. The semigroup BP2(∞) contains P2(∞)
as a sub-semigroup and t̂ is the extension of t to BP2(∞) by setting t̂(d) = 0 for
all d /∈ P2(∞). The positivity of the function t is linked thus with an algebraic
object rather then through an indirect definition 2.3. We will therefore denote
the V-Fock space over H associated to the positive definite t by Ft(H), and the
creation and annihilation operators by a�t(f). We denote by the same symbol
ρt the vacuum state 〈·, ·〉 on the algebra of creation and annihilation operators
a(f)� acting on Ft(H).

3 Generalised Brownian Motions Associated to
Characters of S(∞)

By S(∞) we denote the infinite symmetric group, i.e. the group of finitary
permutations of a countable set. A finite character of S(∞) is a central positive
definite indecomposable (not representable as a nontrivial convex combination
of other such functions) function. The fundamental result of Thoma gives an
explicit description of the finite characters.

Theorem 3.1 [62] All normalized finite characters of the group S(∞) are given
by the formula

φα,β(σ) =
∏
m≥2

( ∞∑
i=1

αmi + (−1)m+1
∞∑
i=1

βmi

)ρm(σ)

(3.1)

where α1 ≥ α2 ≥ · · · ≥ 0, β1 ≥ β2 ≥ · · · ≥ 0,
∑
αi +

∑
βi ≤ 1, and ρm(σ) is the

number of cycles of length m in the permutation σ.

We extend the character φα,β to a positive definite function on pair partition tα,β
having a certain multiplicative property. This extension is based on the inclusion
of S(n) in P2(2n) formulated in remark 2.4.

The representation of Veršik and Kerov [64].
We deal first with the case

∑∞
i=1 αi = 1, thus βj = 0. We consider a fixed but

arbitrary n ∈ N ∪ {∞}. Let N = {1, 2, . . .} and α = α1, α2, . . . a measure on N .
Let Xn =

∏n
1 N with the product measure m(α)

n =
∏n

1 α. The group S(n) acts
on Xn by σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)) and preserves m(α)

n . We define
X̃n = {(x, y) ∈ Xn×Xn : x ∼ y} where x ∼ y means x = σy for some σ ∈ S(n).
The Hilbert space

V (α)
n =

{
f : X̃n → C | ∞ > ||f ||2 =

∫
Xn

∑
y∼x

|f(x, y)|2dm(α)
n (x)

}
(3.2)
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carries a unitary representation U (α)
n of S(n) given by

(U (α)
n (σ)h)(x, y) = h(σ−1x, y). (3.3)

Let 1n be the indicator function of the diagonal {(x, x) | x ∈ Xn} ⊂ X̃n.

Theorem 3.2 On V (α)
n we have

〈
U (α)
n (σ)1n,1n

〉
= m(α)

n {x : σx = x} = φα,0(σ). (3.4)

In particular for n = ∞ we obtain the representation of S(∞) associated to the
character φα,0 in the convex hull of the vector 1∞.

For any n ∈ N there is a natural isometry jn from V
(α)
n to V (α)

n+1

(jnh)(x, y) = δxn+1,yn+1h(x
(n), y(n)) (3.5)

where x = (x1, . . . , xn, xn+1) = (x(n), xn+1). The maps jn satisfy 2.8. We have
thus a representation of the ∗-semigroup BP2(∞) on

⊕∞
n=0 V

(α)
n (see chapter

III). We denote the associated positive definite function on pair partitions by tα.

Definition 3.3 Let V ∈ P2(2n). There exists a unique noncrossing pair parti-
tions V̂ ∈ P2(2n) such that the set of left points of the pairs in V and V̂ coincide.
A cycle in V is a sequence ((l1, r1), . . . , (lm, rm)) of pairs of V such that the pairs
(l1, r2), (l2, r3), . . . , (lm, r1) belong to V̂ . The length of this cycle ism. We denote
by ρm(V) the number of cycles of length m in the pair partition V .

Theorem 3.4 The function tα has the expression

tα(V) =
∏
m≥2

( ∞∑
i=1

αmi

)ρm(V)
. (3.6)

Proof. Let V ∈ P2(2n). In order o calculate tα(V) we will have to deal with the
spaces V (α)

k for k �= n. The indicator functions δ(x,y) for x, y ∈ Xk and x = σy

for some σ ∈ S(k), form a basis in V (α)
k . As the operators jk are isometries, we

identify all V (α)
k for 0 ≤ k ≤ n with their image in V (α)

p under jk,p := jk . . . jp−1
for p > k and denote by Pk,p = jk,pj

∗
k,p the orthogonal projections onto these
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subspaces. The actions of the various operators are:

jk,pδ(x,y) =
∑

z∈Xp−k

δ((x,z),(y,z)) (3.7)

j∗k,pδ(x,y) =
p∏

i=k+1

αxi

p∏
i=k+1

δxi,yi · δ(x(k),y(k)) (3.8)

Pk,pδ(x,y) =
p∏

i=k+1

αxi

p∏
i=k+1

δxi,yi ·
∑

z∈Xp−k

δ((x(k),z),(y(k),z)) (3.9)

U
(α)
k (σ)δ(x,y) = δ(σx,y). (3.10)

The function tα can be calculated (see Theorem 3.2 in chapter III) in terms of
the operators U (α)

p (σ) and jk,p:

tα(V) =
〈

10,
r∏

a=1

(
j∗ka+1,pa

· U (α)
pa

(πa) · jka,pa

)
10

〉
(3.11)

where k1 = kr+1 = 0 and 10 is a unit vector of V (α)
0 = C. The numbers ka, pa

and the permutations πa are determined from the ‘standard form’ (see figure 3.5)
of the pair partition V which consists of a repeated sequence (from right to left)
of pa − ka right legs denoted d0, followed by a permutation πa then a sequence
of pa − ka+1 left legs denoted d∗0, in such a way that two pairs intersect at most
one time at the rightmost possible permutation.

We interpret 3.11 in the following way. We begin with the characteristic function
of the pair of empty sets δ∅,∅ = 10. We apply the operators one by one from
the right to left. Then every operator jka,pa (equation 3.7) brings a sum over
all |Xpa−ka | possible ‘words’ of pa − ka letters to be added to both sequences
of the previous pair. Next, a permutation πa (equation 3.10) acts on the first
sequence of the pair leaving the other sequence unchanged. The operator j∗ka+1,pa

compares the last pa − ka+1 letters of the two seqences and if they coincide, it
erases them from both sequences and produces a coefficient equal to the product
of the weights αi of the letters. If the letters differ in at least one position, the
pair is removed. In the end we are back at the pair of empty sets and we have a
coefficient which is the value of tα(V).
Now we come to the two pair partitions V and V̂ . Let x : V → X be a possible
sequence of letters atributed to the right legs of V by the steps jka,pa of the above
procedure. The right legs of V and V̂ coincide by definition, thus x defines also
a function x̂ : V̂ → X . As the pair partition V̂ is noncrossing, it corresponds to
the second sequence of the pair, on which no permutation of letters is performed.
The term x of the sum survives the tests of all j∗ka+1,pa

if and only if for each
two pairs one from V and one from V̂ having the same left leg, the corresponding
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letters in x and respectively x̂ coincide. But this means that all the pairs in each
cycle of V must have the same letter, which implies

tα(V) =
∑

x:ct. on cycles

∏
V ∈V

αx(V ) =
∏
m≥2

( ∞∑
i=1

αmi

)ρm(V)
. (3.12)

The general case. Let γ = 1−∑i αi−
∑

i βi. As previously we fix n ∈ N∪{∞}.
Let N+ = N− = N and Q = N+ ∪ N− ∪ [0, γ] with the measure µ defined as
the Lebesgue measure on [0, γ], µ(i) = αi for i ∈ N+, and µ(j) = βj for j ∈ N−.
The measure space is Xn =

∏n
1 Q with measure m(α,β)

n =
∏n

1 µ; X̃ is defined as
before, as well as the Hilbert space V (α,β)

n (equation 3.2). The representation of
S(n) is given by

(U (α,β)
n (σ)h)(x, y) = (−1)i(σ,x)h(σ−1x, y) (3.13)

where i(σ, x) is the number of inversions in the sequence (σi1(x), σi2(x) . . . ) of
indices ir(x) for which xi ∈ N−. The vector 1n is the indicator function of the
diagonal {(x, x)} ⊂ X̃ .

Theorem 3.5 [64] On V (α,β)
n we have〈
U (α,β)
n (σ)1n,1n

〉
= φα,β(σ). (3.14)

In particular for n = ∞ we obtain the representation of S(∞) associated to the
character φα,β in the convex hull of the vector 1∞.

We define jn as in 3.5. Then we have the general version of theorem 3.4:

Theorem 3.6 The function tα,β has the expression

tα,β(V) =
∏
m≥2

( ∞∑
i=1

αmi + (−1)m+1
∞∑
i=1

βmi

)ρm(V)
. (3.15)

Definition 3.7 [13] A function t on pair partitions is called multiplicative if for
all k, l, n ∈ N with 0 ≤ k < l ≤ n and all V1 ∈ P2({1, . . . , k, l + 1, . . . , n}) and
V2 ∈ P2({k + 1, . . . , l}) we have

t(V1 ∪ V2) = t(V1) · t(V2). (3.16)

Corollary 3.8 The functions tα,β are multiplicative.
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Proof. If V = V1 ∪ V2 as in definition 3.7 then any cycle of V belongs either to
V1 or to V2, thus

ρm(V) = ρm(V1) + ρm(V2). (3.17)

for all m ≥ 2.

Corollary 3.9 The operators ωα,β(f) are essentially selfadjoint.

Proof. This follows from the previous corollary and Proposition 5.10 in chapter
III.

From now on we will denote by the same symbol the selfadjoint closure of the
essentially selfadjoint operator ωα,β(f).

4 The von Neumann Algebras Γα,β(K)
Using corollary 3.9 we can make a step further and construct von Neumann
algebras generated by the ‘field operators’ ωα,β(f) for vectors f in certain real
Hilbert spaces.

Definition 4.1 Let Γα,β(K) be the von Neumman algebra generated by the
spectral projections of the operators ωα,β(f) acting on Fα,β(KC), for all f in K,
a real Hilbert space. On Γα,β(K) we distinguish the vacuum state ρα,β(X) :=
〈Ωα,β, XΩα,β〉.

On Fα,β(KC) we define a ∗-algebra Wα,β(K) of (not necessarily bounded) oper-
ators having D := F (fin)

α,β (K) as domain and leaving this domain invariant. We
call Wα,β(K) Wick algebra and its elements generalised Wick products. Such an
operator is a finite linear combination of elementary operators denoted by a sym-
bol Ψ(V , f) where f : F → K, V ∈ P2(P ) and {F, P} is a partition into disjoint
subsets of an arbitrary ordered set. The simplest examples of Wick products are
Ψ(V , ∅) = tα,β(V)1, and Ψ(∅, f) = ωα,β(f). For the exact definition of the Wick
products we refer to section 4 of chapter III. Let Ψ(V1, f1) and Ψ(V2, f2) be two
Wick products. Then

〈Ψ(V1, f1)Ω, Ψ(V2, f2)Ω〉 =
∑

Ṽ∈P2(F∗
1 ,F2)

ηf∗1⊕f2(Ṽ) · t(V∗1 ∪ V2 ∪ Ṽ) (4.1)

with the following notations:
1) if A is a finite ordered set then A∗ denotes the same set with the reversed
order and similarly for f∗ and V∗;
2) if fi : Ai → K with Ai finite ordered sets then A1+A2 denotes the ordered set
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obtained by concatenating A1 and A2, f1 ⊕ f2 : A1 + A2 → K is the map which
restricts to fi on Ai for i = 1, 2;
3) if {A1, A2} is a partition into disjoint subsets of an ordered set A then
P2(A1, A2) denoted the subset of P2(A) whose elements contain only pairs with
one element from A1 and the other from A2;
4) with the previous notations, for V ∈ P2(A1, A2)

ηf1⊕f2(V) :=
∏

(l,r)∈V
〈f1(l), f2(r)〉 . (4.2)

The adjoint of Ψ(V , f) is Ψ(V∗, f∗). The product of two Wick products is written
in terms of elementary Wick products as follows

Ψ(V1, f1) ·Ψ(V2, f2) =
∑
P̃1,P̃2

∑
V∈P2(P̃1,P̃2)

ηf1⊕f2(V) ·Ψ(V1 ∪ V2 ∪ V , f̌1 ⊕ f̌2) (4.3)

with P̃i denoting a subset of Pi, and f̌i is the restriction of the function fi : Pi → K
to the complement of P̃i in Pi.

Remark 4.2 In general, if the field operators ωt(f) are bounded then the Wick
algebra Wt(K) is weakly dense in Γt(K) for infinite dimensional K. However for
finite dimensional K the von Neumann closure of Wα,β(K) can be larger than
Γt(K). If the field operators are unbounded then the Wick operators are affiliated
to Γt(K).

Let us take a closer look at the type of the von Neumann algebras Γα,β(K). The
following cases are already known.
1) α1 = 1: we obtain the classical (commutative) Brownian motion Bt :=
ω(χ(0,t]). for K = L2

R
(R+), or the algebra of n independent gaussian random

variable for K = Rn.
2) β1 = 1: fermionic Brownian motion, the corresponding von Neumann algebra
Γ0,1(K) being the type II1 hyperfinite factor for dim(K) =∞.
3) αi = βi = 0: free Brownian motion [65], Γ0,0(Cn) is the non-hyperfinite II1
factor isomorphic to the von Neumann algebra of the free group with n generators
(n ≥ 2 or n =∞).

In all the above cases the vacuum state ρα,β is tracial.

Lemma 4.3 Let α, β be as in theorem 3.1 with α1 �= 1, β1 �= 1,
∑

i αi+
∑

i βi �=
0. Then Γα,β(<2R(Z)) does not have any tracial normal state.

Proof. Let us suppose that there exists a tracial state τ on Γα,β(<2R(Z)) and
consider the automorphism Γα,β(S) := adFα,β(S) of Γα,β(<2R(Z)) where S is the
right shift on <2

R
(Z). From section 5 of chapter III we have

w−lim
n→∞

Γα,β(Sn)(X) = ρα,β(X)1 (4.4)
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for elements X in the Wick algebra Wα,β. If the field operators ωα,β(f) are
bounded then Wα,β(<2R(Z)) is dense in Γα,β(<2R(Z)) and we can conclude that
τ(Γα,β(Sn)(XY ))→ ρα,β(XY ) for X,Y ∈Wα,β(<2R(Z)). This would imply

ρα,β(ω1ω2ω3ω4ω5ω1ω4ω3ω2ω5) = ρα,β(ω5ω1ω2ω3ω4ω5ω1ω4ω3ω2)
ρα,β(ω1ω2ω3ω4ω5ω3ω6ω2ω1ω6ω5ω4) = ρα,β(ω4ω1ω2ω3ω4ω5ω3ω6ω2ω1ω6ω5)

for ωi = ωα,β(ei) with ei normalized orthogonal on each other. Thus

∑
i

α2i −
∑
i

β2i =

(∑
i

α2i −
∑
i

β2i

)(∑
i

α3i +
∑
i

β3i

)
,

(∑
i

α2i −
∑
i

β2i

)(∑
i

α4i −
∑
i

β4i

)
=

(∑
i

α3i +
∑
i

β3i

)2

.

If ωα,β(f) are unbounded operators one has to be more careful with expressions
of the type τ(

∏p
i=1 ωki). We consider first the cutoff fields ω(c)i = P

(c)
i ωi where

P
(c)
i is the spectral projection of ωi associated to the interval [−c, c]. Then we

still have
w−lim
n→∞

Γα,β(Sn)(M (c)) = ρα,β(M (c))1 (4.5)

for M (c) =
∏p

i=1 ω
(c)
ki

. Finally by letting c →∞ we obtain the same result as in
the case of bounded fields.

Lemma 4.4 Let α, β be as in lemma 4.3. The vacuum vector Ω ∈ Fα,β(<2R(Z))
is not separating for Γα,β(<2R(Z)).

Proof. Let (en)n∈Z be the orthonormal basis of <2
R
(Z) and denote a�i = a�(ei).

We consider the generalised Wick products X = Ψ({(1, 4), (2, 6)}, f) and Y =
Ψ({(2, 4)},g) with f(3) = g(3) = e2, f(5) = g(1) = e1. Then

XΩ = Y Ω = a∗1a3a
∗
2a
∗
3Ω (4.6)

On the other hand consider

ψn = a3a∗2a4a
∗
3a5a

∗
4 . . . ana

∗
n−1a

∗
nΩ (4.7)

then

〈a∗1Ω, Xψn〉 =
∑
i

αn+2
i + (−)n+1

∑
i

βn+2
i ,

〈a∗1Ω, Y ψn〉 =
∑
i

αni + (−)n+1
∑
i

βni

(4.8)
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which cannot be equal for all n.

Remark. At first sight it might be surprising that the state ρα,β which is ob-
tained by extending the characters of the infinite symmetric group is not tracial.
However the trace property of ρα,β on Γα,β(K) is independent of the trace prop-
erty of the characters φα,β .

5 An example with type I∞ factors

We consider in more detail the following particular functions:

1) tN := tα,β with αi = 1
N for i = 1, . . . , N and βj = 0 for all j;

2) t−N := tα,β with βi = 1
N for i = 1, . . . , N and αj = 0 for all j.

For any N ∈ Z \ {0} we have

tN (V) =
(

1
N

)|V|−c(V)
(5.1)

where |V| and c(V) denote the number of pairs, respectively the number of cycles
of the pair partition V . The corresponding character is denoted by φN .

In the spirit of [9, 13, 10, 11] we define an alternative representation of the algebra
of creation and annihilation operators using the technique of deformation of the
inner product on the full Fock space. Let H be a Hilbert space and F (fin)(H) be
the linear span of the vectors of the form f1 ⊗ . . . ⊗ fn with n ≥ 0 and fi ∈ H
endowed with the usual inner product on the full Fock space overH. We consider
the new sesquilinear form 〈·, ·〉N given by the sesquilinear extension of

〈f1 ⊗ . . .⊗ fn, g1 ⊗ . . .⊗ gm〉N = δn,m
∑

τ∈S(n)
φN (τ)

〈
f1, gτ(1)

〉
. . .
〈
fn, gτ(n)

〉
.

(5.2)
The positivity of 〈·, ·〉N follows from that of the operatorQN defined on F (fin)(H)
whose restriction to H⊗n is

Q
(n)
N =

∑
τ∈S(n)

φN (τ)Ũn(τ). (5.3)

We denote by DN the operator on F (fin)(H) which restricts to

D
(n+1)
N := 1+

1
N

n+1∑
i=2

Ũn+1(π1,i) (5.4)

on H⊗n+1 and D(0)
N Ω = Ω. The permutation πj,i is the transposition of i and j.

Let Q̃(n)
N be the operator 1 ⊗ Q(n)

N acting on H⊗n+1. The following relation is
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immediate
Q
(n+1)
N = D(n+1)

N Q̃
(n)
N . (5.5)

Let l(f), l∗(f) be the left creation and annihilation operators on the full Fock
space over H. On F (fin)(H) we define new creation operator a∗N (f) := l(f) and
the annihilation operator aN(f) = l∗(f)DN . From 5.5 we get

〈η, a∗N(f)ξ〉N = 〈aN (f)η, ξ〉N (5.6)

for η, ξ ∈ F (fin)(H). By dividing out the || · ||N -norm zero vectors we obtain the
pre-Hilbert space F (fin)

N (H) whose completion with respect to 〈·, ·〉N is denoted
by FN (H). The operators aN(f), a∗N (f) are well defined on F (fin)

N (H) and are
each other’s adjoint on FN (H). Let ωN (f) := aN (f) + a∗N (f) be the symmetric
‘field operators’.

We will prove that the vacuum expectations of monomials in ωN (·) satisfy the
equation 2.3 characterizing the gaussian states with t = tN .

Lemma 5.1 For any f, g ∈ H the following relation holds on FN(H):

aN (f)a∗N (g) = 〈f, g〉1+
1
N

dΓ(Tf,g) (5.7)

where the differential second quantisation operator dΓ(A) is defined by

dΓ(A)f1 ⊗ . . .⊗ fn =
n∑
i=1

f1 ⊗ . . .⊗Afi ⊗ . . .⊗ fn (5.8)

for A ∈ B(H).

Proof. Direct application of the definitions.

Lemma 5.2 Let f1, . . . , fp ∈ H. Then

〈Ω, ωN(f1) . . . ωN (fp)Ω〉 =
∑

V∈P2(p)

tN (V)
∏

(k,l)∈V
〈fk, fl〉 (5.9)

Proof. For p odd the expectation is zero. From the definitions of the creation
and annihilation operators it is clear that the vacuum state is a Fock state for
a certain positive definite function t on pair partitions. We have to prove that
t ≡ tN with the latter as defined in 5.1. By linearity it is enough to prove the
relation for p

2 pairs of orthonormal vectors e1, . . . e p
2
ordered such as they give

rise to a certain pair partition V = {(l1, r1), . . . , (l p
2
, r p

2
)} ∈ P2(p):〈

Ω,
p∏

i=1

a�i

N (fi)Ω

〉
= tN (V) (5.10)
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for a
�lk

N (flk) = aN (ek) = (a
�rk

N (frk
))∗.

We consider the innermost pairs of the non-crossing pair partition V̂ associated to
V (see definition 3.3). Each such pair is of the form (k, k+1) for some 1 ≤ k < p.
The corresponding term in the monomial is aN (fk)a∗N (fk+1). We distinguish two
cases:
1) if fk = fk+1 = f then (k, k + 1) ∈ V . By 5.9 we have

aN (fk)a∗N (fk+1) = 1+
1
N

dΓ(Pf ) (5.11)

with Pf the projection on the one dimensional space spanned by f . The term
dΓ(Pf ) brings contribution zero to the expectation because the rest of the vectors
fi are orthogonal on f . Thus the pair (k, k + 1) ∈ V can be deleted without
changing the expectation.
2) if fk �= fk+1 then k and k + 1 belong to different pairs (k, a) and respectively
(b, k + 1) in V . By 5.9 we have

aN(fk)a∗N (fk+1) =
1
N

dΓ(Tfk,fk+1) (5.12)

The action of the operator dΓ(Tfk,fk+1) on
∏p

k+2 a
�i(fi)Ω is in effect to replace

the vector fk which appears exactly once in any tensor product, by fk+1. Equiv-
alently one can delete the positions k and k + 1 from the ordered sequence and
replace the pairs (b, k+1), (k, a) by one pair (b, a) leaving the other pairs invari-
ant. Let us denote this pair partition by V̌k. Then〈

Ω,
p∏

i=1

a�i

N (fi)Ω

〉
= t(V) = 1

N
t(V̌k) (5.13)

By repeating the procedure of reducing the number of pairs through step 1) or
2) we arrive at〈

Ω,
p∏

i=1

a�i

N (fi)Ω

〉
= t(V) =

(
1
N

) p
2−c(V)

= tN (V) (5.14)

Remark. We thus conclude that the representation of the algebra of creation
and annihilation operators constructed in this section and the the one described
in section 2 are unitarily equivalent as GNS representations with respect to the
Fock state ρN associated to tN . As in definition 4.1, we denote by ΓN (K) the
von Neumann algebra generated by the spectral projections of the selfadjoint
extensions of the operators ωN(f) acting on FN (KC) for all f ∈ K.
From the relations 5.9 we can conclude that a�N(f) is bounded for N < 0 and
unbounded for N > 0. We will concentrate on the von Neumann algebra ΓN (K)
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for N < −1 and infinite dimensional K. We have seen that except the three
special cases the von Neumann algebras Γα,β(K) are infinite. In fact we will
show that ΓN (<2

R
(Z)) is the whole algebra of bounded operators on FN (<2(Z))

(for N < −1).
Proposition 5.3 Let N < −1 be an integer. Then ΓN(<2

R
(Z)) = B(Ft(<2(Z))).

Proof. We show that the projection PΩ onto the one dimensional space spanned
by the vacuum vector belongs to ΓN (<2

R
(Z)). From this we can conclude that

the algebra ΓN (<2
R
(Z)) is the whole B(FN(<2(Z))) because Ω is cyclic vector for

WN(<2
R
(Z)) which is dense in ΓN (<2

R
(Z)).

Let Ni := dΓ(Tei,ei) be the number operator counting ‘one-particle’ ei-states in
FN(<2(Z)). For simplicity we make the notations ωi := ωN (ei) and similarly for
ai, a

∗
i .

Let Ψ(V , f) be an arbitrary Wick products with f : F → <2
R
(Z), V ∈ P2(P ) and

{F, P} a disjoint partition of the ordered set {1, . . . , 2n+p}. On the Wick algebra
WN(<2

R
(Z)) we define the map Φ:

Φ : Ψ(V , f) �→ w−lim
n→∞

ωnΨ(V , f)ωn = Ψ(V, f) (5.15)

where V = V ∪ {(0, 2n+ p + 1)} is obtained by adding the pair (0, 2n + p + 1)
to V which embraces all other points of the set {1, . . . , 2n+ p}. Such a map has
been used previously in section 6 of chapter III. The following limits are easy to
check by taking expectations with respect to vectors in F (fin)

N (<2(Z)):

w−lim
n→∞

ωnaiaiωn =
1
N
aiai,

w−lim
n→∞

ωna
∗
i aiωn =

1
N2

Ni,

w−lim
n→∞

ωnNiωn = Ni,

w−lim
n→∞

ωnaia
∗
iωn = 1+

1
N

Ni.

These relations lead to

w−lim
k→∞

Φk(ω2i ) = 1+
N + 1
N2

Ni (5.16)

which implies that Ni ∈ ΓN(<2
R
(Z)). Let P (i) denote the projections on the

eigenspace of Ni with corresponding eigenvalue equal to zero. Then (P (i))∞i=−∞
form a commuting family of projections in ΓN (<2

R
(Z)) and

PΩ = w−lim
k→∞

k∏
i=−k

P (i). (5.17)
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Definition 5.4 i) The category of non-commutative probability spaces has as ob-
jects pairs (A, ρA) of von Neumann algebras and normal states and as morphisms
between two objects (A, ρA) and (B, ρB) all completely positive maps T : A → B
such that T (1A) = 1A and ρB(Tx) = ρA(x) for all x ∈ A.
ii) A functor Λ from the category of (real) Hilbert spaces with contractions to the
category of non-commutative probability spaces is called functor of white noise
if Λ({0}) = C where {0} stands for the zero dimensional Hilbert space.

We construct for any real Hilbert space K a von Neumann algebra ∆N (K) such
that ∆N becomes a functor of white noise.

Definition 5.5 LetK be a real Hilbert space. On the Fock space FN (KC⊕<2(Z))
we define the von Neumann algebra ∆N (K) generated by the Wick products
Ψ(V , f) with Im(f) ⊂ K ⊕ 0.

Lemma 5.6 Let T : K → K′ be a contraction. Then the map defined on the
Wick products Ψ(V , f) ∈ ∆N (K) by

∆N (T ) : Ψ(V , f) �→ Ψ(V , (T ⊕ 1) ◦ f) (5.18)

extends to a morphism from ∆N (K) to ∆N (K′). Moreover ∆N is a functor of
white noise.

Proof. If TT ∗ = 1K′ then

Ψ(V , f) �→ FN(T ⊕ 1)Ψ(V , f)FN (T ⊕ 1)∗ = Ψ(V , (T ⊕ 1) ◦ f) (5.19)

restricts to the desired map on Wick products Ψ(V , f) with f(k) = fk⊕0 and sub-
sequently extends to a completely positive map ∆N (T ) from ∆N (K) to ∆N (K′).
If T ∗T = 1K then there exists an orthogonal operatorOT : K⊕<2

R
(Z)→ K′⊕<2

R
(Z)

whose restriction to K coincides with T and thus

FN (OT )Ψ(V , f)FN (OT )∗ = Ψ(V , OT ◦ f) (5.20)

has again the required action on Wick products with vectors from K and extends
to a ∗-homomorphism ∆N (T ) from ∆N (K) to ∆N (K′). An arbitrary contraction
T can be written as a product PI of a co-isometry and an isometry. Then we
define ∆N (T ) := ∆N (P )∆N (I) which does not depend on the particular choice
of P and I, and apply the previous cases. By definition ∆N (∅) = C.

Theorem 5.7 The von Neumann algebra ∆N (<2
R
(Z)) is isomorphic to a discrete

sum of type I∞ factors.
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Proof. We denoted by (ei ⊕ ěj)i,j∈Z an orthonormal basis of <2(Z)⊕ <2(Z). The
corresponding number operators are Ni and Ňj . As in the proof of proposition
5.3 one can show that Ni ∈ ∆N (<2

R
(Z)) and Ňj ∈ ∆N (<2

R
(Z))′. The common

eigenspaces of all the number operators Ni, Ňj are finite dimensional which im-
plies that the selfadjoint elements Z in the center of ∆N (<2

R
(Z)) have discrete

spectrum and thus the center is isomorphic to <∞(M) for a countable discrete
setM . Let n := (ni)i∈Z be a sequence of natural numbers such that only a finite
number of them are different from zero. We denote by FN (n) the joint eigenspace
of the operators Ni with eigenvalues ni. The projection Pn onto this space be-
longs to ∆N (<2

R
(Z)). We make a similar notation for the projections P̌m onto

the eigenspaces of Ňj . Let Q ≤ Pn be another projection in ∆N (<2
R
(Z)) which

is equivalent to Pn. Then there exists a partial isometry W ∈ ∆N (<2
R
(Z)) such

that WW ∗ = Pn and W ∗W = Q. Furthermore the projections P̌mQ and P̌mPn
have finite range for all m which implies that Q = Pn, thus finite. As

∑
n Pn = 1

we conclude that each factor in the decomposition of ∆N (<2
R
(Z)) must be of type

I. But just as in lemma 4.3 we can show that on ∆N (<2
R
(Z)) there is no tracial

state and thus all factors are I∞.

Theorem 5.8 The von Neumann algebra ∆N (R) is isomorphic to⊕N+1
p=2 Mp(C).

Proof. From theorem 5.7 we have that Ni ∈ ∆N (<2R(Z)) ⊂ B(FN(<2(Z)⊕<2(Z))).
Let Pi,k be the spectral projection of Ni corresponding to the eigenvalue 0 ≤ k ≤
−N . Then the creation operator a∗i can be written as

a∗i =
N−1∑
k=0

Pi,k+1ωiPi,k (5.21)

and thus all creation and annihilation operators ai belong to ∆N (<2R(Z)). The
Wick products Ψ(V , f) can be expressed in terms of the creation and annihilation
operators by using the relations

aia
∗
j = δi,j +

1
N

dΓ(Ti,j) (5.22)

and the commutation relations

[a(f), dΓ(A)] = a(A∗f) (5.23)

for A ∈ B(<2R(Z)). Thus ∆N (K) is generated by the operators a�(f ⊕ 0) with
f ∈ K. In particular ∆N (R) is the von Neumann algebra generated by a� := a�(e)
on FN (C⊕ <2(Z)) with e a unit vector in C. Let N be the corresponding number
operator and ψk a vector with Nψk = kψk. Notice that 0 ≤ k ≤ |N |. If moreover
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we have aψk = 0 then the cyclic representation of ψk has dimension |N | − k + 1
and is isomorphic to M|N |−k+1(C). By choosing the appropriate basis of the
representation we obtain the matrix of a∗

a∗ =

√
1
N




0 1 0 . . . 0
0 0

√
2 . . . 0

...
...

...
. . .

...
0 0 0 . . .

√|N | − k
0 0 0 . . . 0


 .

The space FN (C⊕ <2(Z)) decomposes into an infinite number of copies of each of
these representations provided that we verify that such ‘pseudo-vacuum’ vectors
ψk exist in FN (C ⊕ <2(Z)). Let b := a(e0) be another annihilation operator.
Define for 0 ≤ k < N

ψk = b∗a∗kΩ+
1

|N | − k + 1
a∗dΓ(Te,e0)a

∗kΩ. (5.24)

Then Nψk = kψk and

aψk =
1
N

dΓ(Te,e0)a
∗kΩ +

1
|N | − k + 1

(1 +
k − 1
N

)Γ(Te,e0)a
∗kΩ = 0. (5.25)

We show that ψk �= 0. Making use of the previous equality we have

〈ψk, ψk〉 =
〈
Ω, akbψk

〉
= ||a∗kΩ||2 −

− 1
|N |(|N | − k + 1)

〈
Ω, akdΓ(Te0,e)dΓ(Te,e0)a

∗kΩ
〉
=

= ||a∗kΩ||2 − k

|N |(|N | − k + 1)
||a∗kΩ||2 =

=
(|N | − k)(|N |+ 1)
|N |(|N | − k + 1)

||a∗kΩ||2 �= 0. (5.26)

Finally let ψN be a vector with NψN = NψN . The monomials in creation
operators a∗ and (a∗k)k∈Z applied to the vacuum form a total set in the Fock
space FN (C⊕ <2(Z)). Let us write

ψN =
p∑

k=−p
a∗kψ̂k + a

∗ψ̃, (5.27)

for some vectors ψ̂k with Nψ̂k = Nψ̂k and Nψ̃ = (N − 1)ψ̃. We show that
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||ψN ||2 = |N | · ||aψN ||2:

||ψN ||2 =
〈
ψN , a

∗a(
p∑

k=−p
a∗kψ̂k + a

∗ψ̃)

〉
=

=
1
|N |

〈
ψN ,

p∑
k=−p

a∗kψ̂k + a
∗ψ̃

〉
=

1
|N | ||ψN ||

2 (5.28)

where we have used that aa∗ψ̃ = 1
|N | ψ̃, and

a∗aa∗kψ̂k =
1
N
a∗dΓ(Te,ek

)ψ̂k =
1
N

[a∗, dΓ(Te,ek
)]ψ̂k =

1
|N |a

∗
kψ̂k.

Corollary 5.9 The functors ∆N1 and ∆N2 are not isomorphic for N1 �= N2.
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ED Nijmegen, The Netherlands

ABSTRACT

The notion of generalised Brownian motion is extended to multiple processes
indexed by a set I. For −1 ≤ q ≤ 1 the q-product of positive definite functions
on pair partitions having the multiplicative property is defined, and shown to
be a positive definite function on I-colored pair partitions. The resulting I-
indexed generalised Brownian motion interpolates between graded tensor product
(q = −1), reduced free product (q = 0) and tensor product (q = 1) of the given
Brownian motions.

4This chapter is based on reference [29].
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1 Introduction

Two different notions of independence stand out in non-commutative probability:
tensor and free independence. The quantum stochastic calculus of Hudson and
Parhasarathy [50] generalises the classical independence to tensor independence,
and the free probability of Voiculescu [65] relies on free independence.

Beyond the well established frameworks of these two theories, an investigation
concerning the notions of quantum white noise, Brownian motion and Markov
processes is developed by Köstler [38] in the spirit of Kümmerer’s approach to
quantum probability [42, 41, 39]. Related to this, is the theory of generalised
Brownian motion initiated by Bożejko and Speicher which provides concrete ex-
amples of quantum white noises but also raises interesting operator algebraic
questions.

The generalised Brownian motions [13] are non-commutative processes ω(f) in-
dexed by elements f of a real Hilbert space K and endowed with a distinguished
‘gaussian’ positive linear functional ρt given by the following pair prescription:

ρt(ω(f1) . . . ω(fn)) =
∑

V∈P2(n)

t(V)
∏

(k,l)∈V
〈fk, fl〉 (1.1)

where the sum runs over all pair partitions of the ordered set {1, . . . , n} and
t :
⋃

k∈N
P2(2k) → C is a function defined on all possible pair partitions called

positive definite. We regard ω(f) as symmetric operators on the Hilbert space
arising from the GNS construction.

The most important examples of positive definite functions are t(V) = 1 for all V
which characterizes the classical Brownian motion [53] and, t(V) = 0 for crossing
partitions and t(V) = 1 for non-crossing partitions which characterizes the free
Brownian motion [65].

A remarkable interpolation between these cases arises from the algebra of q-
deformed commutation relations a(f)a∗(g)−qa∗(g)a(f) = 〈f, g〉1 for −1 ≤ q ≤ 1
investigated in a number of papers [10, 11, 12, 21, 23, 26, 33, 34, 45, 55, 67]. The
monomials in fields ω(f) := a(f) + a∗(f) have vacuum expectations as in 1.1
with tq(V) = qcr(V) and cr(V) being the number of crossings of the pair partition
V . Further functorial and operator algebraic properties of this Brownian motion
are studied in [9]. It turns out that we have a functor of white noise [42, 41] that
is, a functor from the category of real Hilbert spaces with contractions to the
category of non-commutative probability spaces.
Another interpolation between the classical and free Brownian motion is found
in [13] : tp(V) = p|V|−B(V) where |V| is the number of pairs of V and B(V) is the
number of connected components or blocks of V , and 0 ≤ p ≤ 1.

Inspired by ideas from combinatorics, such as that of species of structures [5,
35] and analytic functors [36], the author together with Hans Maassen [28, 27]
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(chapters II and III of this thesis) have found a more functorial approach to the
study of generalised Brownian motion. The GNS representation space of the
algebra of fields ω(f) over a real Hilbert space K, with respect to the gaussian
state ρt has the Fock-like form

Ft(KC) :=
∞⊕
n=0

1
n!
Vn ⊗s K⊗nC

, (1.2)

where Vn is a Hilbert space carrying a unitary representation Un of the symmetric
group S(n), and ⊗s denotes the closed subspace of the tensor product Vn ⊗K⊗nC

whose orthogonal projection is

Pn =
1
n!

∑
τ∈S(n)

Un(τ) ⊗ Ũn(τ), (1.3)

and
Ũnf1 ⊗ . . .⊗ fn = fτ−1(1) ⊗ . . .⊗ fτ−1(n) (1.4)

for fi ∈ KC. The factor 1
n! in 1.2 refers to the inner product on Vn ⊗s K⊗nC

. We
note that Ft is an endofunctor of the category of Hilbert spaces with contractions
called analytic functor [36]. The fields ω(f) can be represented as the sum of
creation and annihilation operators a(f)+a∗(f) which are defined with the help of
a sequence of operators jn : Vn → Vn+1 satisfying the intertwining relations with
respect to the representation of the symmetric groups Un and Un+1: jnUn(τ) =
Un+1(ι(τ))jn , with ι the natural embedding of Un into Un+1 by keeping the last
letter fixed. Concretely,

a∗(f) : Pn(vn ⊗ ψn) �→ (n+ 1)Pn+1(jnvn ⊗ r(f)ψn). (1.5)

where vn ∈ Vn, ψn ∈ K⊗nC and r(f) is the right creation operator as defined on
the full Fock space over KC. For more details we refer to the first 3 sections of
chapter III. Using this insight, a new class of positive functions on pair partitions
has been found [8], which extend the indecomposable characters of the infinite
symmetric group and for which the gaussian state is not tracial.

In the present work we answer a question of Roland Speicher concerning the
existence of the q-product of generlised Brownian motions. In his paper [57]
Speicher has analyzed the existence of universal products on the category of
unital algebras with normalized linear functionals. The universal product should
satisfy some natural requirements such as associativity and universal calculation
rule for mixed moments. The result is that the only possibilities are the tensor
product and the reduced free product. In the case of q-deformations, a concrete
result in this direction has been proved in [45]. However one can still define a
q-product for the algebras of generalised Brownian motions with gaussian states
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ρta characterized by the positive definite functions ta with a in a index set I, by
the calculational rule:

( ∗
a∈I

(q)ρta)

(
n∏
i=1

ωc(i)(fi)

)
=
∑
V
qcr(V,c)

∏
a∈I

ta(Va)
∏

(i,j)∈V
〈fi, fj〉 . (1.6)

The sum is taken over those pair partitions V such that if (i, j) ∈ V then c(i) =
c(j) ∈ I, which we call the ‘color’ of the pair (i, j), the pair partition Va is
the subset of pairs in V which are colored in the color a, and the coefficient
cr(V , c) counts the number of crossings between pairs of different colors. The main
objective of the paper is to prove the positivity of this functional for functions
ta which have a certain multiplicativity property. This is done in section 3, but
as a preparation for that we develop the framework for I-indexed generalised
Brownian motion which is a fairly straightforward extension of the usual theory
to the case of more than one processes ‘coexisting’, this time the key notion being
that of positive definite function on I-colored pair partitions.

The q-product interpolates between graded tensor product [47] (q=-1), reduced
free product [65] (q=0) and tensor product [53] (q=1).

Finally, a central limit theorem is proved showing that as n→∞, the functional
obtained by taking the q-product of a function t a number n of times and re-
stricting it to the algebra of fields ω(f) = 1√

n

∑n
i=1 ωi(f), converges in law to

that of the q-deformed fields given by tq(V) = qcr(V).

2 Generalised Brownian motions and
the ∗-semigroup BPI2 (∞)

Let I be an arbitrary index set. In this section we will extend the notions
of generalised Brownian motion and the associated ∗-semigroup of broken pair
partitions defined in chapter III to the case of multidimensional processes indexed
by the set I.
Definition 2.1 Let P be a finite ordered set. By PI

2 (P ) we denote the set of
I-colored pair partitions, that is pairs (V , c) with V ∈ P2(P ) and c : V → I.

Definition 2.2 Let X be an arbitrary finite ordered set and (La, Pa, Ra)a∈I a
disjoint partition of X into triples of subsets indexed by elements of I. For each
a ∈ I we consider a triple (Va, f (l)a , f

(r)
a ) where Va ∈ P2(Pa) and

f (l)a : La → {1, . . . , |La|}, f (r)a : Ra → {1, . . . , |Ra|} (2.1)

are bijections. Any order preserving bijection α : X → Y induces a map

αa : (Va, f (l)a , f
(r)
a )→ (α ◦ Va, f (l)a ◦ α−1, f (r)a ◦ α−1) (2.2)
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where α ◦ V := {(α(i), α(j)) : (i, j) ∈ V}. This defines an equivalence relation.
The corresponding element d of BPI2 (∞) is such an equivalence class of collec-
tions of triples (Va, f (l)a , f

(r)
a ) for a ∈ I.

In other words the elements of BPI2 (∞) are broken pair partitions as in definition
3.1 in chapter III, with additional labeling with indices from I of the pairs and
legs. For each a ∈ I there is a broken pair partition da, however only a finite
number of them are not empty. The product and involution are defined as for the
∗-semigroup BP2(∞) with the additional condition that the left legs and right
legs which are joined must be indexed by the same element of I.
Let d1 = (Va,1, f (l)a,1, f

(r)
a,1)a∈I and d2 = (Va,2, f (l)a,2, f

(r)
a,2)a∈I be two elements of

BPI2 (∞) with the notations from definition 2.2. Let M = min(|Ra,1|, |La,2|) be
the number of legs which ‘join’ by taking the product of d1 and d2. Then we
define

d1 · d2 = (Va, f (l)a , f
(r)
a )a∈I (2.3)

with
Va = Va,1 ∪ Va,2 ∪

{(
(f (r)a,1)

−1(i), (f (l)a,2)
−1(i)

)
: i ≤ M

}
, (2.4)

and the map f (l)a defined on the disjoint union of the sets La,1 of left a-colored
legs from the left diagram d1, and La,2 \ (f (l)a,2)

−1({1, . . . ,M}) consisting of the
unpaired left a-colored legs of the diagram d2 by{

f
(l)
a (i) = f (l)a,1(i) for i ∈ La,1
f
(l)
a (j) = f (l)a,2(j)−M+ |La,1| for j ∈ La,2 \ (f (l)a,2)

−1({1, . . . ,M}) .

The function f (r)a is defined similarly. The product does not depend on the chosen
representatives for di in their equivalence class and is associative. The diagrams
with no legs are the I-colored pair partitions, thus PI2 (∞) ⊂ BPI2 (∞).

The involution is given by mirror reflection. If d = (Va, f (l)a , f
(r)
a ) then d∗ =

(V∗a , f (r)a , f
(l)
a ) with the underlying set X∗ obtained by reversing the order on X

and
V∗a := {(i, j) : (j, i) ∈ Va} (2.5)

is the adjoint of Va. It can be checked that

(d1 · d2)∗ = d∗2 · d∗1. (2.6)

We are interested in positive functionals t̂ on the ∗-semigroup BPI2 (∞) which
have the form

t̂(d) =
{

t(d) if d ∈ PI2 (∞)
0 otherwise. (2.7)
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The function t : PI2 (∞)→ C will be called positive definite on I-colored pair par-
titions and will be shown to characterize generalised Brownian motions indexed
by I.
Let n : I → N be a function which is equal to zero except a finite number of
elements. We denote by BPI2 (n,0) the set of diagrams d for which |Ra| = 0 and
|La| = n(a). The GNS-representation (χt, V, ξt) with respect to t̂ is characterized
by

〈χt(d1)ξt, χt(d2)ξt〉V = t̂(d∗1 · d2) (2.8)

which implies

V =
⊕
n

Vn where Vn = lin{χt(d)ξt : d ∈ BPI2 (n,0)}. (2.9)

On Vn there is a unitary representation of the direct product group

S(n) := Xa∈IS(n(a)) (2.10)

each of the terms S(n(a)) permuting the a-colored left legs of the diagrams in
BPI2 (n,0). We denote by π(d) the diagram obtained by applying the permu-
tation π to the element d and the representation by Un. We distinguish the
operators ja := χt(da,0) where da,0 is the diagram containing one left leg in-
dexed by a ∈ I. The following intertwining relation will be important in later
constructions:

ja : Vn → Vn+δa

ja · Un(τ) = Un+δa(ι
(a)
n (τ)) · ja (2.11)

with (n + δa)(b) := n(b) + δa,b and ι(a)n the natural embedding of S(n) into
S(n+ δa).

The function t on a I-colored pair partition (V , c) can be calculated by putting
the pair partition in the ‘standard form’, as a sequence (from the right to left)
consisting of left legs, followed by permutations acting on the legs of the same
index in I and right legs which connect with the left legs having the same index,
etc. The permutations can be fixed by asking that if two pairs of the same color
cross, then the crossing should be performed once and only once by the right-most
permutation possible.

For example, let X = {1, . . . , 6} and V = {(1, 4), (2, 5), (3, 6)} with the coloring
c((1, 4)) = c((3, 6)) = a and c((2, 5)) = b. Then

(V , c) = d∗a,0 · d∗b,0 · d∗a,0 · (π1,2, e)(da,0 · db,0 · da,0) (2.12)

where (π1,2, e) is an element of S(2) X S(1). The function t can be calculated as
follows

t((V , c)) = 〈ξt, j∗a j∗b j∗a U2,1(π1,2, e) ja jb ja ξt〉 . (2.13)
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In general, let V ∈ P2(2n) be a pair partition and c : V → I a coloring. Then
c can be also seen as defined on {1, . . . , 2n} with the condition that it takes
the same value in points belonging to the same pair of V . We split the ordered
set {1, . . . , 2n} in a number 2m of disjoint subsets B(r)

i := {ki−1, . . . , pi} and
B

(l)
j := {pi + 1, . . . , ki}, with k0 = 1 and kr = 2n such that the blocks B(l)

j

contain left legs of pairs in V and B(r)
j contain right legs. Finally the value of t

can be written as the expectation

t((V , c)) =
〈
ξt,

p1∏
l=1

j∗c(l) Un1(π1)
k1∏

l=p1+1

jc(l) . . . Unr(πr)
2n∏

l=pm+1

jc(l) ξt

〉
.

(2.14)

On the basis of this structure we pass now to the construction of the generalised
Brownian motion indexed by I. Let t : PI2 (∞) → C be a positive definite
function on I-colored pair partitions, and H a Hilbert space. We define the
Fock-like space

Ft(H) :=
⊕
n

1
n!
Vn ⊗s

⊗
a∈I

H⊗n(a) (2.15)

with the factor 1
n! :=

∏
a

1
n(a)! referring to the inner product. The symbol ⊗s is

a short notation for the subspace consisting of vectors ψ which lie in the range
of the projection Pn

Pn :=
1
n!

∑
τ∈S(n)

U(τ)⊗ Ũ(τ). (2.16)

The operators Ũ(τ) act on the space
⊗

a∈I H⊗n(a) by permuting the vectors in
each term H⊗n(a).

On Ft(H) we define creation and annihilation operators for each index a ∈ I
and vector f ∈ H. Let rb(f) be the creation operator which acts on the tensor
product

rb(f) :
⊗
a∈I

H⊗n(a) →
⊗
a∈I

H⊗n(a)+δa,b (2.17)

as identity on H⊗n(a) for a �= b and as right creation operator on H⊗n(b).
The annihilation operator ab(f) acts on a vector of the level n of the Fock space
as follows:

ab(f) : Vn ⊗s

⊗
a∈I

H⊗n(a) → Vn−δb
⊗s

⊗
a∈I

H⊗n(a)−δa,b

ab(f) : ψn �→ (j∗b ⊗ r∗b (f))ψn (2.18)

As a consequence of 2.11 we have

Pn−δb
(j∗b ⊗ r∗b (f))Pn = (j∗b ⊗ r∗b (f))Pn (2.19)
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which means that ab(f) is a well defined operator on the dense domain F (fin)
t (H)

of the Fock space Ft(H) consisting of ‘finite number of particles’ states. The
creation operator acts on a simple vector vn ⊗s f := n!Pnvn ⊗ f as

a∗b(f) vn ⊗s f = (jbvn)⊗s (rb(f)f). (2.20)

We give without proof the following result which is a straightforward extension
of the similar one in the case of one generalised Brownian motion [27]:

Theorem 2.3 Let f1, . . . , fn be vectors in a Hilbert space H. Then the expecta-
tion values with respect to the vacuum state ρt of the monomials in creation and
annihilation operators have the expression

ρt(
n∏
i=1

a�i

bi
(fi)) =

∑
(V,c)∈PI

2 (n)

t((V , c))
∏

(i,j)∈V
〈fi, fj〉 · δbi,bj ·Q(Ji, Jj) (2.21)

where

Q =
(
ρt(abab) ρt(aba∗b )
ρt(a∗bab) ρt(a∗ba

∗
b)

)
=
(

0 1
0 0

)
.

Furthermore consider H = KC with K a real Hilbert space and define the fields
ωb(f) := ab(f) + a∗b(f) for vectors f in K. Then the restriction of ρt to the ∗-
algebra generated by the fields is the gaussian state characterizing the I-indexed
generalised Brownian motion.

Corollary 2.4 Let f1, . . . , fn be vectors in the real Hilbert space K. Then

ρt(
n∏
i=1

ωbi(fi)) =
∑

(V,c)∈PI
2 (n)

t((V , c))
∏

(i,j)∈V
〈fi, fj〉 · δbi,bj . (2.22)

Remark 2.5 The restriction of the state ρt to the algebra generated by the fields
ωb(f) for a fixed b ∈ I is a generalised Brownian motion in the usual sense. For
different indices b one obtains in general different Brownian motions.

An important class of positive definite functions on pair partitions are those
which have the multiplicativity property

t(V) = t(V1) · t(V2) (2.23)

for any pair partition V which is the reunion of two subpartitions V1 and V2 not
crossing each other. For a multiplicative function t, the operators ja are isometric
(see lemma 5.9 in chapter III). Furthermore by proposition 5.10 of chapter III,
the field operators ωb(f) are in this case essentially selfadjoint.
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3 The q-product of generalised Brownian motions

Definition 3.1 Let (V , c) ∈ PI2 (∞) be a I-colored pair partition. The number
of inter-crossings of (V , c) is defined by the total number of crossings between the
pairs of different colors in V

cr(V , c) = 1
2
P{(p, q) | p, q ∈ V crossing, c(p) �= c(q)}. (3.1)

The main result of this work is the existence of the q-product of generalised
Brownian motions which satisfy the multiplicativity property.

Theorem 3.2 Let I be an index set and −1 ≤ q ≤ 1. Let ta be a given multi-
plicative positive definite function on P2(∞) for every a ∈ I. Then the function

( ∗
a∈I

(q) ta)((V , c)) := qcr(V,c)
∏
a∈I

ta(c−1(a)). (3.2)

is positive definite on PI2 (∞).

Proof. We will firstly prove that for each n : I → N the kernel kn defined on
the set of diagrams in BPI2 (n,0) is positive definite. Let di = (Va,i, f (l)a,i)a∈I for
i = 1, 2, be two such diagrams with legs only to the left. Then we have

kn(d1,d2) = ( ∗
a∈I

(q) ta)(d∗1 · d2). (3.3)

The kernel kn can be written as a product of three kernels

kn(d1,d2) =
∏
a∈I

ta((d∗1 · d2)a) · qcr(d1)+cr(d2) · qcr(d1,d2). (3.4)

where by (d∗1 · d2)a we denote the a-colored component of d∗1 · d2. The first
product is a positive kernel by the positivity of each of the functions ta. The
second product is also a positive definite kernel. The exponent cr(di) stands for
the number of inter-crossings of di, that is number of crossings between pairs p, q
with different indices - i.e., p ∈ Va,i and q ∈ Vb,i with a �= b - plus the number of
crossings between pairs and left legs with different indices - i.e., p = (l, r) ∈ Va,i
and k ∈ La,i = Dom(f (l)b ) such that l < k < r and a �= b. To obtain the total
number of inter-crossings cr(d∗1 ·d2) of the I-indexed pair partition d∗1·d2, we need
to add the number of crossings of right legs of d∗1 and left legs of d2 which have
different colors. This is the exponent cr(d1,d2) of the last term of the product
3.4. The factor qcr(d1,d2) depends only on the functions f (l)a,i which determine the
positions of the left legs, and does not depend on the pair partitions Va,i. The
positivity of cr(d1,d2) is thus equivalent to that of the vacuum representation of
an algebra with commutation relations which is described below.
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Consider the algebra generated by the operators ab,i with i = 1, . . . ,n(b) satisfy-
ing the commutation relations

ab,ia
∗
c,j − qa,b a∗c,jab,i = δa,bδi,j1, (3.5)

with qa,b = 1 if a = b and qa,b = q if a �= b. Such algebras have been investigated
in [33, 34, 55] and more generally in [12]. There it is proved that for |q| ≤ 1 the
algebra can be represented on a Hilbert space with vacuum vector Ω̃ satisfying
ab,iΩ̃ = 0. In particular this implies that the third kernel in 3.4 is positive definite
and thus kn as well.

We denote the Hilbert spaces generated by the kernels kn by Vn. Let

λn : BPI2 (n,0)→ Vn (3.6)

be the Gelfand map, i.e. 〈λn(d1), λn(d2)〉 = kn(d1, d2). On BPI2 (n,0) there is
an action of the group S(n) and kn is invariant under this action, thus it gives
rise to the unitary representation Un on Vn. On the Hilbert space V :=

⊕
n Vn

we define the operators ja by

jaλn(d1) = λn+δa(da,0 · d1). (3.7)

The multiplicative property of the function ta implies that

kn(da,0 · d1, da,0 · d2) = kn(d1, d2) (3.8)

which means that ja is a well defined isometry. Moreover ja satisfies the intertwin-
ing property 2.11. We have thus constructed a representation of the ∗-semigroup
BPI2 (∞) on the Hilbert space V , with respect to the positive functional t̂ where
t = ∗(q)a∈Ita.

As described in the previous section we define now the creation and annihilation
operators a�b(f) on the Fock space F∗(q)

a∈Ita
(H) for f ∈ H in an arbitrary Hilbert

space H and b ∈ I. Similarly, the fields are ωb(f) := a∗b(f) + ab(f).

Definition 3.3 Let t be a multiplicative positive definite function on (I-indexed)
pair partitions. We denote by Γt(K) the von Neumann algebra on Ft(KC) gener-
ated by the selfadjoint operators ωb(f) with f in a real Hilbert space K and b ∈ I.
If the state ρt on Γt(K) is tracial then we call the function t tracial. For a com-
plex Hilbert space H we denote the von Neumann algebra on Ft(H) generated by
all the fields ωb(f) with f ∈ H by Γt(H).

Graded tensor product for q = −1. We take a closer look at the case q = −1.
Let F be the unitary operator Ff = −f on H. Then

Γt(F ) : X �→ Ft(F )XFt(F )∗ (3.9)
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is an order two ∗-automorphism of Γt(H) which we call Z2-grading. The vacuum
state ρt is invariant under Γt(F ). This makes (Γt(H), ρt) a Z2-graded non-
commutative probability space [47].

Definition 3.4 [47] Let (A, φ) be a Z2-graded probability space with grading γ.
Two von Neumann subalgebras A1 and A2 of A which are invariant under γ, are
called graded independent if they gradely commute, i.e. a1a2 = (−1)∂a1∂a2a2a1
for all ai ∈ Ai which satisfy γai = (−1)∂aiai, where ∂ai ∈ {0, 1} is called the
grading of ai, and moreover φ(a1a2) = φ(a1)φ(a2). If A = A1

∨A2 then we call
A the graded tensor product of A1 and A2.

From the definition of the −1-product function ∗(−1)a∈I ta we can conclude that the
creation and annihilation operators of different index anticommute, i.e.

a�1b (f1)a�2c (f2) = −a�2c (f2)a
�1
b (f1) (3.10)

for b �= c. This implies that the algebra Γ∗(q)
a∈Ita

(H) is the graded tensor product

of the non-commutative probability spaces Γta(H) for a ∈ I.

Corollary 3.5 The q-product ∗(q)a∈Ita of multiplicative positive definite functions
ta is a positive definite multiplicative function on PI2 (∞) and interpolates between
the graded tensor product (q=-1), reduced free product (q=0) and the tensor prod-
uct (q=1). If all ta are tracial then ∗(q)a∈Ita is tracial.

The q-product provides a method for obtaining new positive definite functions
on pair partitions by taking the product of known ones and restricting to a
subalgebra generated by the sums of creation operators ab(f) over the same
vector. Let I be a finite index set and ta be positive multiplicative functions
for each a ∈ I. On F∗(q)

b∈Itb
(K) we define the new creation operators a∗(f) :=

1√
|I|
∑

b∈I a
∗
b(f). The restriction of the state ∗(q)b∈Itb to the algebra generated

by a�(f) is a Fock state and the associated positive definite function on pair
partitions (∗(q)b∈Itb)

(r) has the following expression in terms of ta and q:

( ∗
b∈I

(q)tb)(r)(V) =
(

1
|I|
)|V| ∑

c:I→V
qcr(c,V)

∏
a∈I

ta(c−1(a)) (3.11)

The restriction of a q-product of n functions which are equal to t will be denoted
by t∗nq . We denote by tq the positive definite function arising from the algebra
of q-commutation relations:

tq(V) = qcr(V). (3.12)

The following central limit theorem states that for any positive definite multi-
plicative t, the q-product t∗nq converges to tq as n goes to infinity.
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Theorem 3.6 (Central Limit) Let t be a positive definite multiplicative func-
tion on pair partitions. Then t∗nq converges pointwise to tq when n→∞.

Proof. Let V be a pair partition. Then

t∗nq (V) =
(
1
n

)|V| ∑
c:n→V

qcr(c,V)
∏
a∈I

t(c−1(a)). (3.13)

for n := {1, . . . , n}. We consider n big enough such that n > |V|. From the sum
we isolate the terms which give to each pair in V a different color, c(p1) �= c(p2)
for p1 �= p2. Any such term brings a contribution equal to

(
1
n

)|V|
qcr(V) which in

total gives qcr(V).
The rest of the terms can be grouped according to the partition of V in sub-
partitions determined by the color of the pairs Va = {c−1(a)} for a = 1 . . . , n.
A fixed such partitioning of V has at most |V| − 1 sets and thus the number of
possibilities of attributing one of the n colors to each set is smaller that n|V|−1.
In the limit n→∞ the contribution of this group of terms in the sum 3.13 tends
to zero.

Example. Consider the free Brownian motion, i.e. t(V) = 0 if V is crossing and
t(V) = 1 if V is non-crossing. Then the product of n such functions gives

t∗nq (V) =
(
1
n

)|V|
· qcr(V) · J{c : V → n | cr(c−1(i)) = 0, ∀i ∈ n}. (3.14)

Remark. At the moment is it not clear to us in what extent the q-product defined
here for generalised Brownian motions can be extended to other algebras. For
example let A,B be two algebras as considered in [12] with generators satisfying
commutations relations of the type

aia
∗
j −

∑
k,l

ti,kj,l a
∗
kal = δi,j (3.15)

for A and similarly for B. Then the q-product could be defined by adding the
commutation relations aib∗m = qb∗mai for all generators ai of A and bm of B. The
new algebra will satisfy the conditions formulated in corollary 3.2 of [12] if the
given algebras A,B do satisfy them.
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[12] Bożejko, M., Speicher, R., Completely positive maps on Coxeter groups,
deformed commutation relations, and operator spaces, Math. Ann., 300,
(1994), 97–120.
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[27] Guţă, M., Maassen H., Generalised Brownian motion and second quantisa-
tion, J. Funct. Anal., to appear.
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Samenvatting

Gaussische processen in niet-commutatieve kanstheorie

Zij ω(·) een lineaire afbeelding van een reële Hilbertruimte K 2 <2
R
(Z) naar de

ruimte van stochasten op een kansruimte met eindige momenten. Stel dat voor
een orthonormale basis (ei)∞i=1 van K de stochasten (ω(ei))∞i=1 onafhankelijk zijn
en dezelfde verdeling hebben met variantie 1. Dan volgt uit de centrale limietstel-
ling dat elke familie (ω(gi))ni=1 gezamelijk Gaussisch is met als covariantiematrix
(〈gi, gj〉)ni,j=1. We noemen (ω(f))f∈K een Gaussisch proces over K. Zo’n proces
heeft dan de volgende invariantie-eigenschap

E(ω(f1)ω(f2) . . . ω(fp)) = E(ω(Of1)ω(Of2) . . . ω(Ofp)), (1)

waarbij O een willekeurig orthogonale transformatie van K is en (fi)
p
i=1 vectoren

zijn in K.
In dit proefschrift wordt het volgende probleem onderzocht: wat gebeurt er

als we niet van de stochasten eisen dat ze met elkaar commuteren? Het juiste
kader wordt dan dat van de niet-commutatatieve kanstheorie. Hierin wordt de
kansruimte vervangen door het paar (A, ρ), waarbij A een ∗-algebra met eenheid
is en ρ een positieve genormeerde lineaire functionaal op A. De elementen van
A stellen binnen dit kader de stochasten voor en ρ de verwachtingswaarde. Een
niet-commutatief Gaussisch proces over een reële Hilbertruimte K voldoet per
definitie aan (1) en wordt gekarakteriseerd door een functionaal

ρt(ω(f1) . . . ω(fn)) =
∑

V∈P2(n)

t(V)
∏

(l,r)∈V
〈fl, fr〉 .

Hierbij is t : P2(∞)→ C een afbeelding gedefinieerd op de verzameling P2(∞) :=
∪∞n=0P2(2n), de partities in paren van de eindige geordende verzamelingen met
even aantal elementen {1, 2, . . . , 2n}. Het bekendste voorbeeld [9, 10] van zo’n
afbeelding is tq(V) = qcr(V), waarbij cr(V) staat voor het aantal overkruisingen
tussen verschillende paren in de grafische voorstelling van V en waarbij −1 ≤
q ≤ 1. Deze tq leidt tot de algebra van de q-commutatierelaties a(f)a∗(g) −
qa∗(g)a(f) = 〈f, g〉1, die interpoleren tussen het bosonische (q = 1), vrije (q = 0)
en het fermionische (q = −1) geval. De q-Gaussische stochasten zijn ωq(f) :=
a(f)+a∗(f). Bożejko en Speicher [13] onderzochten een ander voorbeeld van deze
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zogenaamde ‘gegeneraliseerde Brownse beweging’ en gaven hiermee de aanzet tot
nieuw onderzoek naar deze processen.

In hoofdstuk III wordt aangetoond dat de cyclische representatieruimte van
elk Gaussisch proces van de volgende vorm is:

FV (KC) :=
∞⊕
n=0

Vn ⊗s K⊗nC
.

Hierin is (Vn)∞n=0 een rij van Hilbertruimten die elk een unitaire representatie Un
van de symmetrische groep S(n) dragen. Het symbool ‘⊗s’ staat voor de lineaire
deelruimte van Vn ⊗K⊗nC

behorend bij de orthogonale projectie

Pn :=
1
n!

∑
τ∈S(n)

Un(τ) ⊗ Ũn(τ),

waarbij Ũn de unitaire representatie van S(n) is die de factoren in het ten-
sorproduct K⊗n

C
verwisselt. Voor elke n ∈ N bestaat er een lineaire operator

jn : Vn → Vn+1 met de vervlechtingseigenschap: Un+1(τ)jn = jnUn(τ) voor
alle τ ∈ S(n) ⊂ S(n + 1). De ‘Gaussische’ variabelen ω(f) kunnen dan worden
voorgesteld als de som van de creatie- en annihilatieoperatoren a∗(f) + a(f).
Voor elke vn ∈ Vn, h ∈ KC, en ψn ∈ K⊗nC

wordt a∗(h) gegeven door

a∗(h) : vn ⊗s ψn �→ (jnvn)⊗s (ψn ⊗ h).
De rij (Vn, Un, jn)∞n=0 wordt verkregen via de representatie van de ∗-halfgroep
BP2(∞) met betrekking tot de functionaal t̂, de uitbreiding van t van P2(∞) tot
BP2(∞).

Onze aanpak verschilt van die van Bożejko and Speicher, en is gëınspireerd
door Joyal’s theorie van combinatorische soorten [5, 35], die gëıntroduceerd wordt
in hoofdstuk II. Een soort F is een familie van eindige verzamelingen (F [n])∞n=0,
waarbij F [n] staat voor de ‘F -structuren’ genummerd door elementen van n :=
{0, 1, . . . , n−1}. Verder is er een werking van S(n) op F [n]: voor elke τ ∈ S(n) is
F [τ ] een bijectie op F [n] en F [τ ]F [σ] = F [τ ◦ σ]. Voor elke soort F [·] definiëren
we een endofunctor F (·) van de categorie van verzamelingen met als morphismen
de afbeeldingen. Gegeven een verzameling J van ‘kleuren’ definiëren we

F (J) :=
∞⋃
n=0

(F [n]× Jn)/S(n),

de verzameling van banen onder de symmetrische groep van J-gekleurde F -
structuren. F (·) wordt analytische functor [36] genoemd. De Hilbertruimte
FF (K) is de lineaire versie van F (J) als we voor Vn de ruimte <2(F [n]) nemen
en voor K de Hilbertruimte met als basis (ei)i∈J . De afbeeldingen jn : Vn →
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Vn+1 kunnen worden gecodeerd in een complexwaardig gewicht op het cartesisch
produkt F×F ′ van F met zijn afgeleide F ′. Gebruikmakend van de combinatorische
constructies vinden we opnieuw de bestaande voorbeelden [13, 10] en bovendien
ook een nieuwe algebra met commutatierelaties a(f)a∗(g)−a∗(g)a(f) = N 〈f, g〉.
Deze algebra wordt verkregen door te kijken naar de symmetrisce Hilbertruimte
van de gewortelde bomen, waarbij N dan de operator is die het aantal ‘takken’
aan een boom telt.

Als t een bepaalde vermenigvuldigingseigenschap heeft, dan zijn de operatoren
jn isometrisch en de velden ω(f) essentieel zelfgeadjungeerd. Het tweede gedeelte
van hoofdstuk III gaat over de von Neumann algebras Γt(K) die worden voort-
gebracht door de velden {ω(f) : f ∈ K} op de Fockruimte Ft(KC). In het
geval van de q-gedeformeerde commutatierelaties is de afbeelding K → Γt(K)
een functor van witte ruis [42, 9], dat wil zeggen een functor van de categorie
van Hilbertruimten met als morphismen contracties, naar de categorie van niet-
commutatieve kansruimten met volledig positieve afbeeldingen zodanig dat
Γ({0}) = C. Als de toestand ρt trouw is dat bestaat er een witte ruis functor Γ∞t .
Voor niet trouwe toestanden ρt maar begrendsde operatoren ω(f) construeren
we een functor ∆t waarbij de von Neumann algebra ∆t(K) voortgebracht wordt
door de zogenaamde gegeneraliseerde Wickproduct-operatoren op de Fockruimte
Ft(KC ⊕ <2(Z)).

In de laatste sectie wordt geanalyseerd voor welke afbeeldingen t de algebra
Γt(<2R(Z)) een factor is. Op basis van een algmeen ‘contractiecriterium’ wordt
aangetoond dat Γtq (<2R(Z)) een factor van type II1 is. De afbeelding tq wordt in
dit geval gegeven door [10]:

tq(V) := (−1)cr(V)q|V|−B(V),
waarbij 0 ≤ q < 1 en B(V) het aantal samenhangscomponenten van V telt.

In hoofdstuk IV wordt er een nieuwe familie van positief definiete afbeeldingen
tα,β onderzocht. De afbeelding tα,β is een uitbreiding tot P2(∞) van het karakter
φα,β van de oneindige symmetrische groep [62]:

tα,β(V) =
∏
m≥2

( ∞∑
i=1

αmi + (−1)m+1
∞∑
i=1

βmi

)ρm(V)
.

Het essentiële concept is dat van cykel van een paarpartitie V . De exponent ρm(V)
telt het aantal cykels van lengtem van V . De von Neumann algebra Γα,β(<2R(Z)) is
oneindig en de vacuümtoestand ρα,β is niet trouw. Een deelfamilie van positieve
afbeeldingen tN (V) := N c(V)−|V| wordt in groter detail geanalyseerd. Hierbij
is N een positief natuurlijke getal en c(V) het totale aantal cykels van V . De
creatie- en annihilatieoperatoren voldoen aan de relaties

aN (f)a∗N (g) = 〈f, g〉1+
1
N

dΓ(Tf,g),
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waarbij dΓ(Tf,g) de differentiële tweede quantisatie van de compacte operator
Tf,g : h → 〈g, h〉 f is. In het geval van negatieve N leidt dit tot het volgende
‘exclusiepricipe’: een vectortoestand kan hoogstens |N | deeltjes met dezelfde
eendeeltjestoestand bevatten.

De algebras ∆N (<2
R
(Z)) zijn discrete sommen van factoren van type I∞. Voor

de een-dimensionele Hilbertruimte R krijgen we de matrixalgebras

∆N (R) =
N+1⊕
p=2

Mp(C).

Als gevolg daarvan zijn de functoren ∆N niet met elkaar equivalent voor ver-
schillende waarden van N .

In hoofdstuk V wordt de notie van gegeneraliseerde Brownse beweging uitge-
breid tot multipele processen gëındiceerd door een verzameling I. Voor elke−1 ≤
q ≤ 1 wordt het q-product van positief definiete afbeeldingen op paarpartities
gedefineerd. Dit is een positief definiete afbeelding op I-gekleurde paarpartities
en heeft bovendien de vermenigvuldigingseigenschap. Het bijbehorende proces
interpoleert tussen het tensorproduct (q = 1), het gereduceerde vrije product
(q = 0) en het gegradeerde tensorproduct (q = −1) van de gegeven Brownse
bewegingen.
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