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Abstract

In intuitionistic analysis one may prove, using Brouwer’s continuity principle
and an axiom of countable choice, that the positively Borel sets form a really
growing hierarchy. The continuity principle implies also that the Borel hierarchy
has a remarkable fine structure.

Introduction

The paper is divided into six Sections. The main result is an intuitionistic Borel
hierarchy theorem: it will be proved in Section 5. In Section 1 we explain intuition-
istic analysis. We introduce positively Borel sets and demonstrate why the argument
establishing the hierarchy that has been given by H. Lebesgue and E. Borel is of no
help to us. In Section 2 we consider subsets of the set R of real numbers and of Baire
space A that are Fj, but not G, or G5 but not F,. (We are using the terminology
introduced by F. Hausdorff. An F, set is a countable union of closed sets, and a G
set is a countable intersection of open sets). We compare our examples with examples
given by L.E.J. Brouwer. Section 3 is a rather long intermezzo, exploring the wide
variety of F, sets. In intuitionistic analysis, F, sets that are not G are very easy
to find: we will see that the union of the two closed real segments [0, 1] and [1,2] is
an example. Clearly then, the union of two closed subsets of R is not always closed.
There are also unions of three closed subsets of R (or, for that matter, A"} that do
not coincide with any union of two closed sets, and so on. The intuitionistic hierarchy
exhibits a fine structure that is absent from its non-intuitionistic counterpart.

We return to our main theme in Section 4 and establish the first countably many
levels of the Borel hierarchy. We find that the fine structure that appeared in the
class of the countable unions of closed sets also shows up at higher levels.

The general hierarchy theorem requires a more subtle argument than the partial result
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of Section 4 and we give such an argument in Section 5.
The last Section collects some remarks on analytical and co-analytical sets and shows
the collapse of the intuitionistic projective hierarchy.

We now mention the titles of the Sections and of some of the subsections:

1. Intuitionistic analysis and positively Borel sets.

1.1. Infinite sequences.

1.2. Axioms of countable choice.

1.3. The continuity principle.

1.4. Cataloguing open subsets of Baire space V.

1.5. The finite levels of the Borel hierarchy in V.

1.6. The set of stumps.

1.7. The transfinite levels of the Borel hierarchy in V.
1.8. The difficulty of complements.

1.8.1. Markov’s principle.
1.8.2. Strong complements.
1.8.3. Strong complements are useless at level 2.

1.9. The diagonal argument.
1.10. Changing the notion of complement 7
1.11. Borel subsets of the set R of real numbers.
1.12. Borel subsets of Polish spaces.
1.13. Brouwer’s Thesis.
1.14. Stronger continuity principles.

2. Beginning the hierarchy.

2.1. Q belongs to TO\ITY.

2.2. The dual question.

2.3. Pos Irr belongs to TI5\X9.

2.4. A less fruitful approach.

2.5. Brouwer’s own examples.

2.6. Analytical and strictly analytical sets.
2.7. A third proof.
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3. The many kinds of countable unions of closed sets.

3.1. Some subsets of the set R of real numbers.
3.1.1. [0,1]U[1,2] is not a closed subset of R.
3.1.2. Theset A:={0,1,1,1 ...} is not a closed subset of R.
3.1.3. The set A:={0,1,2,%,...} is not a finite union of closed sets.
3.1.4. The set A:=1{0,1, %, g, ...} is not Gs.
3.1.5. (0,1} is not a finite union of closed sets.
3.1.6. Unions of n + 1 closed subsets of R not coinciding with any union of
n closed subsets of R.
Finding uncountably many F,-sets containing A and contained in A.
3.2. Some subsets of Baire space V.
3.2.1. Definition of D(P, Q).
3.2.2. Definition of D"(P).
3.2.3. D™"1(A;) is not a union of n closed sets.
3.2.4. D™"1(A;) does not coincide with any countable intersection of unions
of n closed sets.
3.2.5. Perhaps (D?(A;)) coincides with D?(4,).
D3(A;) is not a subset of Perhaps (D?(4;)).
3.3. An interlude on Perhaps.
3.3.1. Perhapsive subsets of NV.
3.3.2. The perhapsive closure of a countable and dense subset of V.
3.3.3. A remark on subsets of N of finite perhapsity.
3.3.4. Subsets of N of bounded perhapsity.
3.4. A collection of countable unions of closed sets of larger and larger perhap-
sity and larger and larger complexity.
3.5. Comparing Cy and D?(A4;).
3.6. Productive upper bounds.
3.7. Finite intersections of finite unions of closed sets.

|k
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4. The Finite Borel Hierarchy Theorem.

4.1. Introduction of Ay, Ey, Ao, Es, .. ..

4.2. (As, Es) is strongly incomparable.

4.3. Every set A,, and every set E, is strictly analytical.

4.4. (A1, Ey) is strongly incomparable.

4.5. A first lemma.

4.6. A second lemma.

4.7. The Finite Borel Hierarchy Theorem: every pair (A,, E,) is strongly in-
comparable.

4.8. For every n, the class IT) is not closed under the operation of finite union.

5. The Borel Hierarchy Theorem.

5.1. Introduction of A,, E,.
5.2. Formulation of the theorem: every pair (4,, E,) is strongly incomparable.
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5.3. Every set A, and every set E, is strictly analytical.

54. A lemma.

5.5. A technical notion.

5.6. An important lemma.

5.7. Proof of the theorem.

5.8. For every hereditarily repetitive stump o, the set D(A,, 4;) does not re-
duce to the set A,.

6. Some remarks on analytical, strictly analytical and co-analytical sets.

6.1. Analytical sets.
6.2. Strictly analytical sets.
6.3. Lusin Separation Theorem, intuitionistic version.
6.4. The range of a strongly injective function from N to A is a positively Borel
subset of N.
6.5. Co-analytical sets.
6.5.1. D?(A;) is not co-analytical.
6.5.2. Al is not strictly analytical.
6.5.3. Boundedness Theorem.
6.5.5. Every subset of A that is both strictly analytical and co-analytical is
a Borel subset of NV.
6.5.6. Al is not positively Borel.
6.6. The collapse of the projective hierarchy.
6.6.1. I} and X3.
6.6.2. II, C 3.
6.6.3. II; and X3.
6.64. ;=3 =II5.
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1 Intuitionistic analysis and positively Borel sets

1.1 Infinite sequences

We are contributing to intuitionistic analysis. The logical constants have their con-
structive meaning and we follow the rules of intuitionistic logic. In particular, a
disjunctive statement AV B is considered proven only if either A or B is proven and
a proof of an existential statement 3z € V[A(x)] has to provide one with a particular
element zq from the set V' and a proof of the corresponding statement A(zg).
Intuitionistic mathematics distinguishes itself from other varieties of constructive
mathematics by its conception of the continuum.

An infinite sequence a of natural numbers a(0), a(1),a(2),... may be the result of
evaluating a finitely described algorithm. Sometimes, however, such an infinite se-
quence is constructed step by step by choosing its values one by one. The sequence
then is never finished: at any point in time only finitely many values have been cho-
sen. It may also happen that one starts building the sequence step by step and then,
at some moment, decides to describe the whole of its continuation in finitely many
words. Even so, we do not divide the infinite sequences of natural numbers into the
ones that are given algorithmically and the (more or less freely) step-by-step created
ones. We treat infinite sequences from the extensional point of view and disregard
the manner of their construction. Every infinite sequence of natural numbers comes
into being in many different ways, and always, even if it is given by an algorithm,
may be imagined to be the result of a step-by-step-construction.

1.2 Axioms of countable choice

Let N be the set of natural numbers and A the set of all infinite sequences of natural
numbers. We use m,n, ... as variables over N, and «, 3, ... as variables over V.
A first axiom of countable choice is the following one:

For every binary relation R on N,
ACpo if for every m there exists n such that mRn,
then there exists « such that, for every m, mRa(m).

One always may construct the promised « step-by-step; that is why we accept the
axiom. We cannot, like non-intuitionistic mathematicians, define a by saying: let
a(m) be the least n such that mRn. One may be unable to find the least such n, for
instance, if one knows OR1 but cannot decide if 0RO or not.

Before we introduce a second axiom of countable choice we agree on some notations.
N* is the set of all finite sequences of natural numbers. We let { ) be a fixed
bijective mapping from N* onto N. Such a function is called a coding of the set
of finite sequences of natural numbers: {ap, a1, ... ,a5-1) is the code number of the
finite sequence (ag,@1,... ,ax-1). We assume that the empty sequence is coded by
the number 0. We let * denote concatenation: x is a binary function on N such that,
for all m,n, m xn is the code number of the finite sequence obtained by putting the
sequence coded by n behind the sequence coded by m.
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We now define another function, called J, from N x N to N: for all m,n : J(m,n) :=
{m) = n. It is easy to see that J is a bijective mapping from N x N onto N\{0}.
We assume that J is bi-monotone in the following sense: for all m,n : J(m,n) <
J{m+1,n) and J(m,n) < J(m,n+1).

We let K, L be the inverse functions of J, that is, K and L are functions from N\ {0}
to N and for each m, m # 0 : J(K(m), L(m)) =m.

J is a pairing function on N.

We will see later that there are some advantages to the choice of this particular J.
Every a in NV dissolves into an infinite sequence of elements o, o', a?,... of A if one
defines, for all m, n, &’ (n) := a(J(m,n)).

Our second axiom of countable choice extends the first one and reads as follows:

For every binary relation R C N x N,
ACyp, if for every m there exists « such that mRa,
then there exists « such that, for every m, mRa™.

We accept also this axiom for the reason that one may construct the promised «
step-by-step. The difficulty of the construction is only slightly greater than in the
case of the earlier axiom ACq g. One has to start and keep going an infinite number
of never finished constructions, one for o, one for a',..., and so on. At each stage

exactly one of these constructions is brought one step further: at stage n one defines
af) (L(n)).

1.3 The continuity principle

We define, give any « and any n : @(n) := {(«(0),a(l),... ,a(n — 1)).
If confusion is unlikely to arise, we sometimes write an for @(n).
The continuity principle reads as follows:

For every binary relation B C A x N,
if for every « there exists m such that aRm,
then for every « there exist m,n such that for every /3,

if @(n) = B(n), then FRm.

cp

The continuity principle is classically false and it makes that intuitionistic analysis is
not a subsystem of classical analysis. The axiom is adopted for the following reason.
If one is able to determine for every « a suitable m, one will in particular be able to
determine a suitable m for any « that is given step-by-step. A number m, suitable
for an « that is given step-by-step will be found at some moment of time, and at that
moment only finitely many values of «, say o(0),a(l),... ,a{n — 1) will be known.
The number m will therefore suit every 4 that has its first n values the same as a.

We repeat the remark we made at the end of Section 1.1: every «, even an algorith-
mically given one, can be thought of as resulting from a step-by-step-construction.

Observe that the intuitionistic continuum is not a set in the sense of classical set
theory. One does not create it by collecting all its previously created elements. The
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continuum is better described as a kind of frame on which all kinds of projects for
constructing possible elements may be executed.

1.4 Cataloguing open subsets of Baire space N/

Every binary relation R on Baire space A may be viewed as a family of subsets of NV:
for every 3in A, we let B3 denote the set of all o in A such that aRB. One sometimes
says that the relation R catalogues or parametrizes the family of sets R3,3 € V.

We now want to define the family of open subsets of N by means of a suitably chosen
binary relation on A'. We start from the idea that a basic open set in Baire space N/
is given by a finite sequence s of natural numbers and consists of all infinite sequences
« that have s as an initial part. An open set in general is a countable union of basic
open sets. We therefore let G be the binary relation on N given by:

for all o, 3in NV : aGB  if and only if  ImIn[B(n) = @m + 1].

A subset X of NV is open if and only if there exists 3 such that, for all o, A if and
ouly if aGp.

There are other binary relations on A that produce the same class of subsets of N.
For instance, let G' be the binary relation on A given by:

for all o,y in NV : aG'y  ifand only if  Im[y(am) = 0].

(An open set is now thought of as being given by a decidable rather than an enumer-
able set of finite sequences.)

We show that GG, G’ parametrize the same class of subsets of A'. We first define a
binary relation C on N by: m [ n if and only if there exists ¢ such that n = m x ¢c.

Given any - one may define 3 such that, for all o, @G g if and only if «G'~, as follows:
for each n, B(n) =0if y(n) #0 and B(n) =n+ 1 if y(n) = 0.

Conversely, given any 3, one may define v such that, for all a, oGS if and only if
a@G'y, as follows: for each m, v(m) = 0 if and only if there exists n < m such that
B(n) C m.

1.5 The finite levels of the Borel hierarchy in A/

We introduce a sequence Gy, Fy,Ga, Fs, ... of binary relations on A, as follows:

(i) For all o, 8, eG4 if and only if Im3In[F(n) = @am+1] ( so Gy coincides with the
relation G defined in Section 1.4) and aFy 3 if and only if YmVn[3(n) # @m+1].
(iiy Foralln > 0, for all o, 3, aGp41 8 if and only if 3m[aF,4™] and aF, 13 if and
only if Vm[aG,3™].
We also introduce, for each n > 0, classes 2%, II?L of subsets of N.
A subset A of Baire space A belongs to the class 2% (H%, respectively) if and only
if there exists A such that, for every «, A« if and only if oG, 3 (A« if and only if
aF, 3, respectively). Sometimes we write A = G,,8 (A = F,,[3, respectively) under
these circumstances.
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We define, for all «, for all p,q, a7 := (af)?.

For every [ there exists v such that, for all a, aGyy if and only if InjaGyA"]; we
define, for all n,+" := X)L This might be taken as a proof of the fact that the
class 2? is closed under the operation of countable union. However, if we want to

show: “for every sequence Xg, X1, Xo,... of open subsets of NV, its union, |J X, is
neN
also open”,we first use the axiom ACyp 1 in order to determine /3 such that for each

n, Xp, = Gof".
Similarly, every class 2% is closed under the operation of countable union, and every
class TIY is closed under the operation of countable intersection.

1.6 The set of stumps
1.6.1

The description of the transfinite levels of the Borel hierarchy requires a further
definition. We need something like countable ordinals and introduce stumps. The set
Stp of stumps is a subset of Baire space N and is given by the following inductive
definition:

(i) 1is a stump. (1 is the element of N with the constant value 1). We sometimes
call 1 the empty stump.
(ii) For all 8 in N, if, for each n, A" is a stump, and B(0) = 0, then 3 itself is a
stump.
(iii) Clauses (i) and (ii) produce all stumps.

N. Lusin had some doubts about the legitimacy of accepting the set Ny of all countable
ordinals and Brouwer sometimes shared these doubts. However, we accept the above
definition, and, as a consequence of (iii), recognize the possibility of giving proofs and
definitions by transfinite induction on Stp.

For every stump (3, we define the successor of 3, notation: 41 or $(3), by: (S(ﬁ)) (0) =
0 and for every n, (S(ﬁ))n = 4.

1.6.2

With every stump 3 we may associate the subset B(f3) of N, consisting of all m in N
such that for every n C m, 8(n) = 0. The set St(3) of all finite sequences of natural
numbers whose code number belongs to B(f3) is a “stump” in the sense given to this
word by Brouwer. We mention three important properties of the set St(f).

(i) We may decide, for every finite sequence of natural numbers, if it belongs to
St(f3) or not.
(ii) Every initial part of a finite sequence in St(3) belongs itself to St(53).
(iii) Finally, to every v in N we may calculate n such that (v(0),... ,~v(n — 1)) does
not belong to St(/3), that is, there exists n such that 5(Fn) # 0.

Observe that St(1) = @; that is why 1 is sometimes called the empty stump. We may
decide, for every stump 3, if 3 =1 or not.
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1.6.3

From now on we use o, 7,... as variables on the set Stp. We define binary relations
<, < on the set Stp of stumps as follows: for every stump o, 1 < ¢ and for no stump
o, 0 < 1. Furthermore, all stumps o, 7 such that 7 # 1, 7 < ¢ if and only if, for each
n, 7" < o, and ¢ < 7 if and only if, for some n, o < 77,

A subset P of Stp is called hereditary if and only if for every stump o, o belongs to
P if every 7 < o belongs to P. One may verify that every hereditary subset of Stp
coincides with Stp.

1.7 The transfinite levels of the Borel hierarchy in A/
1.7.1

We introduce for every ¢, binary relations G, F, on N, as follows:

(1) Gl = G1 and Fl: Fl.
(G4 and F; were introduced in Section 1.5).

(iiy For every o # 1, for all «, 3, oG, 3 if and only if Im[aF,m ] and aF, 3 if and
only if Vm[aG,m 57].

We introduce, for each stump o, classes 2?,, II?, of subsets of V.

A subset A of A belongs to B0 (I12, respectively) if and only if there exists 3 such
that, for all a, A« if and ounly if oG, (Aa if and only if oF, 3, respectively).

We call 8 in A repetitive if and only if for each m there exists n such that n > m and

6777; — 677,.

1.7.2

We introduce a subclass Hrs of Stp. The elements of Hrs are called hereditarily
repetitive stumps. The set Hrs is given by the following inductive definition:

(i) 11is a hereditarily repetitive stump.
(ii) For all 3, if, for each n, 8™ is a hereditarily repetitive stump, and 3 is repetitive,
and B(0) = 0 then 3 is itself is a hereditarily repetitive stump.
(iii) Clauses (i) and (ii) produce all hereditarily repetitive stumps.

For each hereditarily repetitive o, the class 2?,, (Hg, respectively) is closed under
the operation of countable union (countable intersection, respectively). These facts
are formulated and proved like the corresponding facts for 2%, (H%, respectively)

mentioned in Section 1.5.

1.8 The difficulty of complements
1.8.1 Markov’s principle

The subsets of A that belong to one of the classes 22 are called the positively Borel
subsets of V. Observe that we did not use the operation of taking complements in
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their construction.

This is because there are serious difficulties with the operation of taking complements.
For every subset A of AV, we let A° denote the set of all « in NV such that not Aq, that
is, such that the assumption Aa leads to a contradiction. One verifies easily that for
every open A, its complement A€ is closed. On the other hand, the statement that
for every closed, its complement A€ is open cannot be proved intuitionistically. It is
equivalent to

GMP For every o, if ——3nfa(n) = 0], then 3nfa(n) = 0]

a principle that might be called: the generalized Markov principle.

Markov enunciated this principle for algorithmically given sequences «, the general-
ization consists in its extension to arbitrary members of N,

Brouwer developed his famous creating subject arguments in order to show that a
statement very similar to GMP is contradictory; he wanted this fact in order to con-
clude - unconvincingly - that the predicate ——3n[a(n) = 0] is inexpressible without
negation and therefore that negation should not be removed from the language of
intuitionistic mathematics.

1.8.2 Strong complements

We might try to remedy the situation by making the notion of the complement of a
set more constructive.

We use the apartness relation. For all a, 8 in N we say « is apart from 8 (notation:
a#3), if there exists n such that a(n) # 3(n).

This relation has the following well-known properties: for every «, 3, v: not a#a, (#
is irreflexive) and, if a# 3, then B4, (# is symmeiric) and, if a3, then either af#ty
or v#4 (# is co-transitive).

For every subset A of A, we let A% (the strong complement of A) denote the set of all
o in AV such that, for each 3 in A, a#3. One might hope that the strong complement
of any closed set is open. In fact, we only succeeded in proving this for the special
kind of closed subsets of A that are commonly called spreads. A closed subset A of
N is a spread if and only if one may decide, for every n, if there exists « in A such
that Im[am = n] or not. Given a spread A, there exists v in A such that for each
n, v(n) = 0 if and only if there exists & in A such that Im[am = n]. v is sometimes
called the spread-low governing the spread A.

Let us prove that the strong complement of a spread is an open subset of A/, If A
is a spread and v the spread-law governing A one may define a mapping r4 from N
to A such that for every « in A, ra{a) = a. (ra is called the canonical retraction of
N onto A: in order to define r4, one first defines ¢ as follows: §(0) = 0, and for all
a,n, if y(6(a) * {n)) = 0, then 6(a * {(n)) = d(a) x (n) and if v(5(a) * (n)) # 0, then
d{ax {n)) = d{(a) = {ne), where ng is the least p such that v(é(a) * {(p})} = 0. One now
prescribes, for all a,n: ra(a)n = é(@n)).

Suppose now that A is a spread and that [ is apart from every a in A. In particular, 3
is apart from r 4 (), and there exists n such that An # r4(3)n. So there exists n such
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that fn is rejected by the spread-law governing A. Therefore the strong complement
of A is an open subset of A.

The fact that we are unable to prove that the strong complement of every closed subset
of A is open might be considered as a first weakness of the notion of “constructive
complement”.

1.8.3 Strong complements are of no use at level 2

If we go up one level in the hierarchy the situation gets worse. Consider the sets
Es .= {af3n¥m[a(m) = 0]} and Az = {a|Vn3am[a"(m) # 0]}. As we will see, the
strong complement of the set Es is the set Ao, but the strong complement of As does
not coincide with Es.

We first prove that the strong complement of the set Es is the set As.

We suppose 3 is apart from every member of Fs.

Given any n, we consider the sequence v defined by: v(0) := 8(0) and " := 0 and
for each p, if p # n then ~* := gP. Then ~ belongs to Fs, so #~, and therefore
there exists m such that 8™(m) # 0. We conclude that 3 belongs to As. One also
establishes easily that every member of As is apart from every member of Fs.

We now verify that the strong complement of A does not coincide with Es. It con-
tains Fo but is much bigger. In order to see this we first remark that the strong
complement of A, coincides with the set B := {a|a € N|VyIn[a"(y(n)) = 0]}. Let
us prove this. For every v, o we define a sequence f*(v, «) as follows:

(f*(7, @) (0) := a(0) and, for every n, (f*(v,a))" (y(n)) := max(1,a”(y(n))) and,
for every n, p, if 7(n) # p then (f*(y,a))"(p) = a"(p).

Observe that, for each v, o, f*(v,«) belongs to As. Suppose 3 is apart from every
member of A>. Then 3 is apart from every sequence f*(v,3), therefore for every ~
there exists n such that 7 (v(n)) = 0, so 3 belongs to B.

Conversely, suppose 3 belongs to B and « belongs to As. Using the axiom of count-
able choice ACg ¢ we find 7 in \ such that for each n, o’ (y(n)) # 0. As there exists
n such that 37 (y(n)) = 0, a is apart from 3. So every element of B belongs to the
strong complement of As.

We now claim that the assumption that B is a subset of Ey leads to a contradiction.
We have given a proof of this fact in Veldman 1982 and now offer a slightly different
argument.

Let us assume that B is a subset of Es.

Considering sequences o with the property: for every n, a”*? = o™ we see that our
assumption implies: for every « in N, if VpVg[a®(p) = 0V a'(q) = 0], then either
Vpla®(p) = 0] or Yqlat(q) = 0].

It is easy to see that the set C := {aja € N|VpV¥qg[a®(p) = 0V ol (g) = 0]} coincides
with a spread, in fact, for every «, a belongs to C' if and only if for each m, a%m = 0m
or alm = 0m.

It is important now that the continuity principle CP generalizes to spreads. Let
rc : N = C be the canonical retraction of N onto C. r¢ is a continuous function
and, for each o in C, r¢(a) = «. From our assumption we know that for every o, if «

belongs to C, then either a® = 0 or a' = 0, therefore, for every a, either (rc(a))o =0
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or (rc(cz))1 = 0, and, using CP, we calculate m such that, for every a, if @m = 0m,
then (rc(cz))0 = 0 or, for every a, if @m = 0m, then (rc(cz))1 = 0, therefore, for
each «v in C, if @m = Om, then a® = 0, or, for each « in C, if @m = Om, then o' = 0.
This conclusion is false, as there exist 3,7 in C such that Sm = Fm = 0m and S°#0
and ' #0.

Our statement that B is much bigger than FEs should be understood properly; we
mean to say that the assumption that B is a subset of Es leads to a contradiction,
not that we are able to define members of B that are apart from every member of
E5; we are not, and we are also unable to indicate a member of B such that the
assumption that this member of B belongs to E» leads to a contradiction (we do not
know if such members of B exist, although the assumption of GMP excludes their
existence).

One obtains similar conclusions from studying the sets

Fin := {« | 3nVm > nla(m) = 0]} and Inf:= {a | Yn3m > nja(m) # 0]}.

Fin and Inf are (almost) the set of the characteristic functions of the finite and the
infinite subsets of N, respectively.

Infis the strong complement of Fin, but the strong complement of Inf is the set of all
« such that for every strictly increasing v there exists n such that a(v(n)) =0. We
call this set Almostfinite. In Veldman 1999 it is shown that there is an uncountable
variety of positively Borel sets X such that FinC X CAlmostfinite, and X does
not coincide with either Fin or Almostfinite.

1.9 The diagonal argument
1.9.1

We want to find, for every (hereditarily repetitive) stump ¢ a subset of A" belonging
to 2 and not to TI2, and also a subset of A’ belonging to TI2 and not to 2. We
try the famous diagonal argument due to G. Cantor, and first applied in this context
by H. Lebesgue and E. Borel.

1.9.2

We first remark: for every stump o, for all «, 3,7, if aF,y and G, (1 ++), then
a#f.

This is easily proved by transfinite induction on the set of stumps. It means that
for every o, and every v, the sets F,v and G,(1~~) are contained in each other’s
constructive complement.

The statement that the sets F,~ and G, (L ~+) together make up the whole set A is
not true, and, speaking loosely, becomes more and more untrue with increasing o.

1.9.3

Let o be a stump and let us try to find a set belonging to 22 and not to II?,. We
observe that the diagonal set D, := {a|a € N|aF,a} belongs to TI2, and determine
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[ such that, for all «, aF,«a if and only if aF, 3.

We now follow Cantor’s advice and define H, := {a|a € N|aG, (L= )}. We conjec-
ture that H,, while clearly belonging to 2?,, does not belong to II?,. So assume that
H, does belong to II?, and determine -y such that, for all a, H,« if and only if aF,~.
Observe that yF,~ if and ounly if vG, (1 = /) but also vF,~ if and only if vF, 3, there-
fore vF, 3 if and only if vG,(1 = 3).

If we assume vF, 3 we find vG, (1 -~ () and therefore ~v#t, which is absurd, therefore:
not: vF, A3 and not: vG,(1 -+ 73).

The difficulty now is that we are almost always unable to derive a contradiction from
these two negative propositions. Let us consider some simple cases.

1.9.3.1. If ¢ = 1, we have a conclusion of the form: Vn[A(n)] if and only if In[-A(n)],
where A is a decidable subset of the set N of natural numbers. This conclusion is
contradictory indeed: assume n € N and —A(n), then for every p, A(p), contradiction,
therefore =—A(n), and, as A is decidable, A(n). So for each n, A(n). But then there
exists p such that —A(p). Contradiction.

1.9.3.2. If o = §(1), we obtain a conclusion of the form:

Ym3n[A(m,n)] if and only if 3mV¥n[-A(m,n)], where A is a decidable subset of Nx N.
We find -VYmdn[A(m,n)] and —3mV¥n[-A(m,n)], therefore ¥Ym——3n[A(m,n)]. We
are led to a contradiction if we assume GMP, the generalized Markov-principle and
replace Ym——3n[A(m,n})] by Ym3n[A(m,n)]. We also are led to a contradiction if we
use Kuroda’s principle, which says the following: for every P C N, if ¥Ym[-=P(m)],
then ==Vm[P(m)]. Without such non-intuitionistic assumptions we are helpless.

1.9.3.3. If 0 = S(S(1)), we fail utterly. This time, also the generalized Markov
principle and Kuroda’s principle do not save our attempt to reach a contradiction. In
Veldman 1981 and Veldman 1990 it is stated wrongly, that the generalized Markov
principle would enable one to mimick the argument due to Cantor and Lebesgue at all
levels of the Borel hierarchy. The argument only proves that there are closed sets that
are not open and open sets that are not closed, and the generalized Markov principle
enables one only to extend this to the second level of the hierarchy.

1.9.3.4. Our failure at level 3 is explained by the fact, that in intuitionistic predicate
logic, no contradiction follows from the three assumptions:

—VadyVz[P(z,y, 2)], ~ZaVy3z[P(x,y, z)] and YaVyVz[P(x,y, 2) V - P(x,y, 2)].

The following example makes this clear.

Consider the statement: —Va3nVYmla(n) =0 — a(m) = 0].

Using the continuity principle, we may prove it, as follows:

Suppose Vadn¥m[a(n) = 0 — a(m) = 0]. Determine, n,p such that Va[ap = Op —
Vmla(n) = 0 = a(m) = 0]]. Let N := max(p+ 1,n+ 1). Define a := ON * 1 and
observe that we have a contradiction.

On the other hand: —3Javnimla(n) =0 A alm) # 0].

And of course we may decide, for all a,m,n: either a(n) = 0 — a(m) = 0 or
={a(n) =0 - a(m) =0).
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1.9.4

Although the diagonal argument does not solve our problem, the hierarchy theorem
proven by it has an intuitionistic interpretation. We only have to use a translation of
classical logic into intuitionistic logic as given by G. Gentzen or K. G&del.

We first define a set Bor of binary relations on N.

The elements of Bor might be called Borel-catalogues.

Bor is given by the following inductive definition.

(i) The set Gy = {(«, #)|Zm3In[B(n) = @(m) + 1]} belongs to Bor.
(31 is the binary relation on A introduced in Section 1.5 that catalogues the
open subsets of A.
(ii) For every X in Bor, also X¢:= N x N\ X belongs to Bor.
(iii) For every sequence Xg, X1,... of elements of Bor:
the relations S X, and P X, belong to Bor, where, for all a, 3, o SN X,
€

£N
if and only 1f for some n, a(); )(A"), and o P X,)f if and only if for every
neN

n a(Xn)(8").
(8 X, and P X,, might be called the sum and the product of the sequence
neN

Xo, X1, X5, .. respectlvely ).
(iv) Clauses (i)-(ili) produce all elements of Bor.

A subset A of NV is catalogued by X in Bor if and only if there exists a such that
A = Xa. We now define a subclass Class (from “classical”) of Bor, by almost the
same inductive definition: we only remove the infinitary operation S, and replace (i)
by (i)’: The set Fy := A x N\G1 belongs to Class.

One verifies by transfinite induction: for all X in Class, X = X, that is, every
element of Class is a stable subset of N' x A

Following Cantor, one defines, given any X in Class:

D(X) := ala € N|=aXa}. D(X) is catalogued by X¢ but does not occur among
the sets catalogued by X. For suppose it does and determine 3 such that for all «,
—aXa iff aX 3. Then, in particular, =X g if and only if 3X 3, so both =X 3 and
BX 3, contradiction.

1.10 Changing the notion of complement?

Sometimes, constructive mathematicians have been tempted to redefine the notion of
complement. Following them, we say that A, B are complementary positively Borel
subset of N or, more precisely, that (A, B) is a complementary pair of positively Borel
subsets of N, if and only if there exists o, 3 such that A = F,8 and B = G,(1 -+ 3),
or, conversely, A = G, and B = F,(1+ ). Brouwer gives a similar definition in
Brouwer 1992, page 89, line 21-27, where he is studying sets from the second level of
the positive Borel hierarchy. The same course is taken in Martin-Lof 1968, page 80,
and in Bishop and Bridges 1985, pages 73-75. Brouwer goes so far as to introduce
another name, “the counter-set of A”, for the set of all & such that the assumption:
« € A is contradictory.
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We studied two complementary pairs of positively Borel subsets of A/ in Section 1.8.3,
viz. the pairs (As, E2) and (Fin, Inf).

We proved that Ej is part of the constructive complement of As, but does not coincide
with it.

It is easy to see that for every complementary pair (A, B) of Borel subsets of NV, for
every a in A, for every 3 in B, a#/3, that is A is part of the constructive complement
of B and B is part of the constructive complement of A.

It is important to remark that, given some positively Borel subset of A, there may be
many different positively Borel subsets B of A such that (A, B) is a complementary
pair.

Example: Consider Fin:= {a]3nVm>n[a(m) = 0]} and Infi= {a|Vnim>n[a(m) #
0]}. Consider also Fint := {a|Vn[a(n) = 0 — Fin(a)]}. As is shown in Veldman
1995, Fin is a proper subset of Fin™. It is easily seen, however, that (Fin™, Inf) is
a complementary pair. Uncountably many positively Borel sets X such that FinC
X CAlmostfinite were introduced in Veldman 1995, and for each set X from that
collection the pair (X, Inf) is a complementary pair.

Even if A is a closed subset of A we are unable to conclude: for all positively Borel
sets B, C, if both (A4, B) and (A, C) are complementary pairs, then B = C. This is
because there are decidable subsets P, ) of N such that we are sure that: Vn[P(n)] if
and only if Yn[Q(n)] but we do not know: 3n[-P(n)] if and only if In[-Q(n)].

1.11 Borel subsets of the set R of real numbers

We spend a few words on one of the possible ways to introduce real numbers and
Borel sets of real numbers in intuitionistic analysis.

1.11.1

We first determine a fixed enumeration p of the set ) of rational numbers. We then
define, for each n, L*(n) := p(K(n + 1)) and R*(n) := p(L(n + 1)). We define
binary relations C* and * on N, as follows: m C* n if and only if L*(n) < L*(m) <
R*(m) < R*(n) and m =" n if and only if L*(n) < L*(m) < R*(m) < R*(n).

For all rational numbers p, ¢ we define "p, ¢ := the least natural number n such that
L*(n) = p and R*(n) =q.

a in N is called a real number if, for each n, a(n+1) C* a(n) and, for each q,r € Q, if
g < r, then there exist n such that either ¢ < L*(a(n)) or R*(a(n)) < r. We denote
the set of real numbers by R. Observe that R is a G5 subset of V.

1.11.2

For all o, 8 € R, we define: o <* 3 (« is really smaller than ) if and only if there
exists n such that R*(a(n)) < L*(8(n)). We also define: a#*f3 (« is really apart
from f) if and only if either o« <*  or 8 <* «, and: a =* 3 (« really coincides
with ) if and only if the assumption a#* 3 leads to a contradiction. Observe that
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« really coincides with 3 if and only if for each n, both L*(a(n)) < R*(S(n)) and
L*(B(n)) < R*(a(n)).

1.11.3

The relation of real coincidence extends to subsets of R as follows:

Let A, B be subsets of R. A really coincides with B if and only if every member of
A really coincides with some member of B, and conversely, every member of B really
coincides with some member of B.

It is very important that R itself really coincides with a subspread of A and that a
bounded closed interval like [0, 1] really coincides with a fan, or finitary spread, see
Section 1.13.

Let (ap,bg),(a1,b1),... be a fixed enumeration of all pairs (a,b) of rational numbers
such that a < b.

« is called a canonical real number if for each n, a{n + 1) £* a(n) and either a,, <
L*(a(n)) or R*(a(n)) < by,.

Let Crn be the set of all canonical real numbers. Crn is a spread and really coincides
with R.

1.11.4

Let a be a natural number. We define M (a) := $(L*(a) + R*(a)).

M (a) is the midpoint of the rational segment coded by a. Let a,b be natural numbers.
We say that the rational segment coded by b is a regular subsegment of the rational
segment coded by a if either: L*(a) = L*(b) and R*(b) = M (a) or: L*(b) = +(L*(a)+
M(a)) and R*(b) = §(M(a) + R*(a)) or: L*(b) = M(a) and R*(b) = R*(a).

a in R is called a regular real number if and only if for each n, a(n + 1) is a regular
subsegment of a(n).

Let Rrn be the set of all regular real numbers. Rrn is a spread and really coincides
with R.

The set of all regular real numbers « such that L*(a(0)) = 0 and R*(a(0)) = 1is a
finitary spread or a fan really coinciding with the segment [0, 1].

1.11.5

We now define binary relations F*, G* on N as follows:

for all , 8, aG* 3 if and only if there exist m,n such that a(m) =% B(n) and oF* 3
if and only if for all m,n, not a(m) =* B(n).

A subset X of R is called open (closed, respectively) if and only if there exists
in A such that for all @ in R, Xa if and only if aG*3 (X« if and only if aF™* 3,
respectively).

The relations G*, F* catalogue the classes £0(R), IIJ(R) of the open and the closed
subsets of R, respectively. By a definition similar to the one given in Section 1.7 one
obtains, for each stump o, relations G and F*, cataloguing classes called X2 (R) and
IT2 (R), respectively.

Any subset of R belonging to some class 2(R), TI2(R) is called a positively Borel
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subset of R.
Observe that the positively Borel subsets of R are real subsets of R, that is, if X is
such a set and X («) and o = *[3, then X (/).

1.11.6

The following observation will be useful in the sequel.

For every open subset X of R there exists a decidable subset D of () x Q such that for
every o in R, o belongs to X if and only if, for some n, the pair (L*(a(n)), R* (a(n)))
belongs to D.

We leave it to the reader to prove this observation.

1.12 Borel subsets of Polish spaces

We want to discuss arbitrary Polish spaces. In classical mathematics, a Polish space
is defined as a completely metrizable separable topological space.

Intuitionistically, a Polish space is given by a function d : N x N — R satisfying the
triangle inequality: for all m,n,p, d(m,p) < d(m,n) -+ d(n, p).

Let d : Nx N — R be such a function. We describe how to build the space determined
by d and how to define its Borel subsets.

We want to associate with every natural number n the basic neighbourhood B,, :=
B(K(n+1)),p(L(n + 1)), that is, the open ball with center K(n + 1) and radius
p(L(n+1)).

We therefore define two binary relations on N, [, and #4, as follows. For all m,n,
m Cqnif and only if d(K (m+1), K(n+1)) +p(L(m+1)) < p(L(n+1)) and m #4 n
if and only if d(K(m + 1), K(n+ 1)) > p(L(m + 1)) + p(L(n + 1)).

(Observe that, for all m,n, if m 4 n, then B, is part of B, and, if m #4 n, then
B,, lies outside B,,).

g4 and #4 are enumerable subsets of N x N but not necessarily decidable ones. We
construct a function é from N to N such that, for all m,n, m gz n if and only if there
exists p such that §(p) = J(m,n) — 1.

We now let X = X (d) be the set of all & in A/, such that for each n, a(n+1) Cg a(n)
and also for every m there exists p such that p(L(a(p) + 1)) < % Observe that X is
a II9-subset of V. For all a, 8 in X we define: « is d-apart from 3, notation a# 40,
if and only if there exists n such that a(n)#.8(n).

We also define, for all a, 3, « d-coincides with 3 if the assumption « #,4 3 leads to a
contradiction.

Next we define binary relations G(X) and F(X) on AV as follows: for all o, 8, aG(X)3
if there exists m, n such that a(m) Tq B(n), and oF (X)) if for all m, n, not: a(m) gy
B(n).

A subset Y of Z is called open (closed, respectively) if and only if there exists 3 in
N such that, for all @ in Z, Ya if and only if aG(X)S (Ya if and only if aF(X)f3,
respectively).

The relations G(X), F(X) catalogue the classes £9(X),TI%(X) of the open and the
closed subsets of X. By a definition similar to the one given in Section 1.7 one
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obtains, for each stump o, relations G, (X), F,(X) cataloguing classes called 39 (X)
and TI9 (X)), respectively.

The sets belonging to some class % (X), T2 (X) are called the positively Borel subsets
of X. Observe that each positively Borel subset of X is closed under =4, the relation
of d-coincidence.

1.13 Further axioms of intuitionistic analysis: Brouwer’s The-
sis

In Sections 1.1-3 we introduced everything we need for the proof of the intuitionistic
Borel hierarchy theorem: an axiom of countable choice and the continuity principle.
As Brouwer is using more for the examples we will cite in Section 2, we now mention
these further principles of intuitionistic analysis. In Section 6, the last Section of the
paper, we want to draw some other consequences from these further principles.

We called one of them Brouwer’s Thesis in Veldman 1981 and Veldman 1990 and
we will also do so now.

Brouwer’s Thesis:

For every subset P of N:

if for every « there exists n such that P(@n), then there exists a
stump [ such that for every « there exists n such that P(@n) and
Ym < n[f(@m) = 0].

BT

(The notion of “stump” has been introduced in Section 1.6).

Brouwer thought that his Thesis could be seen to be true by reflection on the possible
structure of a proof of the fact “for every « there exists n such that P(an)”.

We refrain from discussing his argument.

Brouwer’s Thesis has important consequences and a particularly famous one is the
Fan Theorem.

A fan or finitary spread is a subset F of Baire space N such that there exist 8 such
that for every «, F(a) if and only if, for each n, B(@n) = 0, and for each n such that
B(n) = 0 there exists m such that for all k, if S(n x (k)) = 0, then k < m.

Fan Theorem:

Let F C N be afan.

For every subset P of N:

FT if for every « in F there exists n such that P(an), then there
exists p such that for every a in F' there exists n < p such that
P(an).

Brouwer used the fan theorem for proving that every real function defined on [0,1] is
uniformly continuous on [0, 1].
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1.14 Further axioms of intuitionistic analysis: stronger conti-
nuity principles

In this Section we introduce two axioms that imply and are stronger than the conti-
nuity principle CP.

We first define a subset Fun of Baire space N. If v belongs to Fun, we will use the
words: “y codes a (continuous) function from N to N7. We define, for each v, v
belongs to Fun if and only if Ya3n[y(@n) # 0].

If v belongs to Fun, we define, for each a, the value of the function coded by v at a,
notation: (), as follows:

¥(a) := the least number p such that Im[y(@m) = p+ 1 AVn < m[y(@n) = 0]]. We
now call the following axiom AC; o (where “AC” stands both for “axiom of choice”
and “axiom of continuity”).

For every binary relation R C N x N:
AC; if for every « there exists m such that aRm, then there exists ~
in Fun such that for every «, aRvy(a).

This axiom needs an argument slightly more elaborate than the argument given for
the continuity principle CP. We allow ourselves to construct the promised v step by
step and consider the finite sequences of natural numbers one by one.

When considering such a finite sequence we imagine that it forms the beginning of
an infinite sequence that is growing step by step, and we ask ourselves if, as such, it
suffices for the determination of a natural number that suits this infinite sequence.
If it does, we determine such a number, call it p, and let the value of v at (the
code number of) this finite sequence be p + 1, if not, we let that value be 0. We
may convince ourselves that for every «, whether it is given by an algorithm or is
constructed, more or less freely, step by step, there will exist n such that v(an) # 0,
by reasons similar to the ones that made us accept the continuity principle CP.

Observe that, if v belongs to Fun and ~v(0) = 0, then for each n, v belongs to Fun.
For this reason, if v belongs to Fun and +(0) = 0, v may be considered as the code
of a continuous function from N to A, If v belongs to Fun and v(0) = 0, we define,
for each «, v|a in N as follows: for each n, (y]a)(n) :=y"(«).

If v belongs to Fun and (0) = 0 we define the range of 7, notation: Ran(y), as
follows: Ran(v) is the set of all sequences v|a, where o belongs to N.

We now introduce an axiom of choice/continuity that implies all earlier ones:

For every binary relation R C N x N:
AC if for every « there exists 4 such that aR3, then there exists v in
Fun such that v(0) = 0 and Ya[aR(vy|a)].

Once more, we construct the promised v step by step. When considering the code
number a of a finite sequence of natural numbers we look for the least n < length(a)
such that Ym < n3b  a[y™(b) # 0]. If there exists no such n we define, for all
m, Y™ (a) := 0. If there exists such a number, we call it ng. We imagine the finite
sequence coded by a to be the beginning of an infinite « that we are constructing
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step by step. We were able already to determine the first ng values of a sequence 3
such that o RS and now ask ourselves if a suffices to determine the next value. If so,
we calculate this next value, call it p and define v (a) := p+ 1, if not, we define
A" (a) := 0. In both cases we define, for each m # ng, v™(a) := 0.

The argument that this procedure guarantees: ~(0) = 0, ~ belongs to Fun and
Va[aR(vla)] is similar to the argument given for the weaker axiom ACy ¢ and we do
not spell it out.
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2 Beginning the hierarchy
2.1 Q belongs to Z\II)

We study Borel subsets of Baire space A, of the set R of real numbers and of other
Polish spaces. As we saw in Section 1, the positively Borel subsets of such spaces are
obtained from their open and closed subsets by the repeated use of the operations of
countable union and countable intersection. Let us first think of R.

One may ask: does there exist a countable union of closed subsets of R different from
every countable intersection of open subsets of R?

(That is: an F, subset of R that is not Gs, or: a subset of R belonging to X9 but not
to TI9).

Such sets exist and the set @ of rational numbers is an example. Observe that Q
is a countable union of singletons and singletons are closed subsets of R. On the
other hand, @ is not a countable intersection of open subsets of R. For, suppose

Go,G1, o, ... is a sequence of open subsets of R such that Q@ = {1} G,. Observe
neN
that each G,,, containing Q, is dense in R. Let ¢g,¢1, ¢z, .. be an enumeration of

and determine 3 such that, for each n, G,, = G*3". (See Section 1.11.5.)

We now construct « in R such that for each n, L*(a(n)) < R*(a(n)) and either
gn < L*(a(n)) or R*(a(n)) < g, and, for all n in N, for some p, a(n) C* 3"(p).
Then « will belong to every G, and be apart from every rational number. Contra-
diction, so Q is not Gjy.

This argument is similar to the one used by R. Baire for his famous Category Theo-
rem, and it is a constructive argument.

It is better to formulate its conclusion positively, that is without using negation, as
follows:

Given any sequence (g, G1,Ga, ... of open subsets of R such that
Q € ) Gy, one may construct a positively irrational number

neN
that belongs to each G,,.

2.2 The dual question

Does there exist a countable intersection of open subsets of R different from every
countable union of closed subsets of R?

There is no way to reduce this question to its dual, treated in Section 2.1. Let us see
why.

We define PosIrr as the set of all real numbers « that are apart from every rational
number. Poslrr is obviously II9 and we guess that is not 5. We try to prove this.

Assume Fp, Fy, ... is a sequence of closed subsets of R such that PosIrr= | F,.
neN
Using ACy 1, determine 3 such that, for each n, F,, = F*3" (see Section 1.11) and

we define, for each n, G, := G*(1~[3"). Each G,, is an open subset of R, and F, is
the set of all real numbers that do not belong to G,,. Is the set @ of rational numbers

a subset of [} G,7 I « in R is rational, then a does not belong to F,, so the
neN
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assumption that « does not belong to G,, leads to a contradiction. Unfortunately, we
cannot conclude from this that « does indeed belong to ,,, unless we are prepared
to use Markov’s principle, see Section 1.8.1. But we are not, and we do not reach the

conclusion that Q is part of {} G, and do not find a real number belonging to both
neN
PoslIrr and [} G,,; we are unable to obtain the desired contradiction.
neN

2.3 Poslrr belongs to II3\ X5

We will now see how we are saved from our difficulty by the continuity principle.
We define a subset Z of Baire space NV, as follows. For each « in A, « belongs to T
if and only if for each n, L*(a(n)) < L*(a(n + 1)) < R*(a(n + 1)) < R*(a(n)) and
gn < L*(a(n)) or R*(a(n)) < gn.

Observe that each member of 7 is a real number that is really apart from every
rational number, so 7 is a subset of Poslrr. Moreover, each positively irrational real
number really coincides with an element of 7. And, most importantly, as a subset of
Baire space NV, 7 is a spread, in the sense defined in Section 1.8.2. We are going to
use the fact that the continuity principle CP generalizes to spreads, as we explained
in Section 1.8.3.

Again assume Fp, Fi,... is a sequence of closed subsets of R such that Poslrr=

{J F,. In particular then, for each « in Z, there exists n such that « belongs to F,.
neN
Let ap be some element of 7. Applying the continuity principle CP, we find m,n

such that for each « in Z, if @m = @ym, then « belongs to F,,. Now every positively
irrational number « in the open interval (L*(a(m)), R*(a(m))) will belong to F,,. As
F, is closed, every number in (L* (a(m)), R* (a(m))) will belong to F,, in particular,
some rational number will belong to F,. Contradiction.

As in Section 2.1, we may give a positive turn to our conclusion:

Given any sequence Fg, Fy, Fy, ... of closed subsets of R such that

PosIrrC |J F),, one may construct a rational number belonging
neN

to some F,.

2.4 A less fruitful approach

Comparing the results of Sections 2.1 and 2.3, one might wonder if it is not possible
to prove the following statement:

For every sequence Fp, Fy,... of closed subsets of R such that
(%) {J F, C Poslrr, there exists a positively irrational number that

neN

does not belong to any F,.

We cannot prove this statement in full generality but are able to prove a special case.
We assume that each set F,, really coincides with a fan.
This assumption is equivalent to the assumption that each set F, is both bounded
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and located in R, that is, for every « in R one may calculate the distance from « to
F,.

Now assume also that each set F, consists of positively irrational numbers. Let
qo,¢1,... be an enumeration of the rationals. Determine a fan G such that each
element of Fy really coincides with some element of G. Observe that for each « in
@ there exists n such that [Ja — go|| > L. Using the continuity principle and the fan
theorem, determine ng in N such that, for each a in G, {|a —gol| > nl—o Now determine

p such that go < L*(p) < R*(p) < qo + nl—o and define «(0) := p. By this choice of
«(0) we have ensured that « will be really apart from ¢p and from every member of
Fy. Continuing, and proceeding similarly, we define (1) in such a way that we are
sure that a will be really apart from ¢ and from every member of F;. And so on.

« will be positively irrational and be apart from every element of |J F,.
neN
We are unable to prove statement (x) in full generality, that is without assuming that

each closed set F,, really coincides with a fan.
We did not obtain satisfying results in connection with statement:

For every sequence Gg,(1,... of open subsets of R such that
(%) ﬂN G, € Q, there exists a rational number not belonging to any

ne

G-
Let us see why. Assume G, G1,. .. is asequence of open subsets of R and (] G, € Q.

neN
If we make the further assumption that Q is contained in {) G, we are of course
neN
back in Section 2.1:
there will exist a positively irrational number in {1} G,. Contradiction.
neN
So @ is not contained in {7} Gp.
neN
This however does not enable us to indicate a rational number that will not belong
to ] Gp.
neN

The difficulty we encounter here in fact occurs already at the first level of the hierarchy.
Consider the real open interval (0, 1).

We are unable to prove:

for every closed subset A of R: if A C (0,1), there exist pin (0,1), p & A.

We can prove it only if we assume that A is located and therefore really coincides
with a fan, and use the fan theorem.

The statements (x) and (xx) obviously are less good as a pattern for the intuitionistic
Borel hierarchy theorem than the results proved in Sections 2.1 and 2.3.

2.5 Brouwer’s own examples

We consider the examples given in Brouwer 1992.



4.0 Dbrouwer's own exampiles

2.5.1

We have to make some preparations.

Let Seqs be the set of all natural numbers a such that, for each ¢ < length(a), a(i) < 3.
We define a mapping D from Seqs to N, as follows. Choose a natural number m such
that L*(m) =0 and R*(m) = 1 and define D({)) :=m.

For each a in Seqs, ¢ < 3, we define D(a * (i)) in such a way that L*(D(a * (i))) =
L*(D(a))+i-37""" and R*(D(ax(i))) = L*(D(a)*(i))+3~""', where n = length(a).
Let S5 be the set of all & in A such that, for each n, a(n) < 3. We define a function
0 from S3 to R: for each n in N, for each a in S5, (6la)(n) := D(@n). Observe that

for every v in S3, d|a really coincides with > a(n)37"7L. The set of all §|a, where
neN
« belongs to Sz, coincides with the set of all real numbers z in [0, 1] that have a

ternary development, that is, we may decide, for every m € Z,n € N, 2 <m-37" or
m-37" < x.

For each n, we let K,, be the set of all & in S3 that assume the value 1 at most n
times, that is, for each p, #{jlj < pla(j) =1} <n+ 1.

It is easy to see that each K, is a fan, and that Ko C K3 C Ky C ...

For each n, we let P, be the set of all real numbers that coincide with some number
0la where « belongs to K.

Each P, is a closed subset of R and o C P, C P2 C.... Wenowlet A be |J P,.
neN
A is a countable union of an increasing sequence of closed subsets of R. Brouwer

called such sets outer limiting species. Not every countable union of closed sets is an
outer limiting species; this is because the union of two closed sets is not necessarily
closed, as we will see in Section 3.

(Among the outer limiting species Brouwer further distinguished the consolidated
ones: there are countable unions of an increasing sequence of located closed sets).
The set A does not coincide with any countable intersection of open subsets of R.
We paraphrase Brouwer’s proof. Let Gg,G1,G2,... be a sequence of open subsets

of R, define I := [} G, and suppose A = I. Using ACy 1, determine 3 such that
neN

for each n, G, = Cev’*ﬁ". For every n,m, for every « in K,,, there exists p,q such
that (dla)(q) =* 8™(p). Brouwer now applies the fan theorem and calculates natural
numbers @ = Q(n,m) and P = P(n,m) such that, for all o, 3 in K,,, there exists
q < @ and p < P such that (8la)(q) =% 57 (p).

For every « in 53, if @() contains at most m 1’s, then there exists v in K, such
that d[yQ = 6@ and &|a will belong to G,,. Brouwer considers the sequence Qo :=
Q(0,0),Q1 := Q(1,1),... and defines a special element « in S3 as follows: «a :=
0(Qo + 1) * (1) x 0(Q1 + 1) + (1) * ...

The real number 8o will be apart from every member of {J P,, and still belong to

neN
N G
neN
Clearly, Brouwer proves a more constructive statement than the conclusion he is

striving for, viz. that A does not coincide with 7. We did the same in Section 2.1. More
important, Brouwer is using the fan theorem, and we used the continuity principle
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only. Brouwer might have given a proof of the correctness of his own example, avoiding

the fan theorem, as follows. One may construct /3, belonging to {7} Gy, but apart from
neN
every member of |J F,, step by step. Define ap := 0. «p belongs to Kp, therefore
neN

dlap belongs to Go = G*3°, so determine My, po such that (§|ag)(Mo) =* 5%(po)-
Define oy := 0(Mp + 1) = (1) x 0 and observe: oy € Kj, therefore d|la; € Gy, so
determine M, p; such that (§|lag)(Mo + 2 + My) ©=* BY(p1). Now define ay :=
0(Mo + 1) = (1) * 0(M; + 1) = (1) * 0 and continue.

Let o in S5 be the limit of the sequence ag, a1, aa,. .., and define 4 := §la.
Brouwer observes that his result generalizes:
suppose Fg, Fy, ... is an increasing sequence of located and closed subsets of R such
that each F,, is nowhere dense, and |} F), is dense.
neN
Then, given any sequence Gg,G1,... of open sets such that |} F, C () Gy, there
neN neN
will exist 4 in ()} Gy, apart from every member of | F,.
neN neN
This generalization is correct (and our example @ may be seen to be a special case)
but one does not need the condition that the sequence Fy, Fi,... is increasing, nor

the fact that each F,, is located.

2.5.2

Brouwer also gives an example of a countable intersection of open sets (an inner
limiting species, in his terminology) that is no outer limiting species, and actually
different from every countable union of closed sets.

Let L be the set of all o in 55 that assume the value 1 infinitely many times and let
I be the set of all #in R coinciding with some d]a, where o belongs to L.

Finally let B be the set of all & in A such that for each n, a(n + 1) £* a(n), and for
each n there exists b such that D(b) = @(n + 1) and b assumes the value 1 at least n
times, that is, #{jlj < length(b)|(b); = 1} > n. It is easy to see that B is a subset of
R, and that every member of I really coincides with some element of B.

Moreover, as a subset of A/, B is a spread.

Assume now that I C |J F,,, where each F,, is a closed subset of R. Then, given any
neN
« in B, one may calculate n such that « belongs to F,. Let ag be some element of B.

Using the continuity principle we find m, n such that, for every a in B, if @m = @gm,
then « belongs to F,,. As F, is closed, and the set {a|a € Blam = @ym} is dense

in the open interval (L* (o (m — 1)), R* (ap(m — 1))), we conclude that the interval
(L* (ao(m — 1)), R* (ao(m — 1))) is contained in F,. One easily finds § in F,, that
does not belong to I.

Brouwer’s application of the continuity principle in this proof is very similar to our
use of it in Section 2.3.
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2.6 Analytical and strictly analytical sets

Both in Section 2.3 and in Section 2.5.2 we did apply the continuity principle. We
used the fact that both the set PosIrr of positively irrational numbers and the set
I of all real numbers between 0 and 1 that admit of a ternary development in which
the number 1 occurs infinitely many times really coincide with a spread.

We now introduce a more general but related notion.

A subset X of R will be called strictly analytical if and only if there exists v in Fun
such that v(0) = 0 and for each «, v]a belongs to X and every element of X really
coincides with some 7|, where « belongs to V.

(Fun is the set of codes of continuous functions from A to N as introduced in Section
1.14. If v belongs to Fun and ~+(0) = 0, then ~ codes a function from N to N, see
Section 1.14.)

This notion extends to subsets of Baire space N itself. A subset X of N is strictly
anolytical if and only if there exists v in Fun such that v(0) = 0 and X coincides
with Ran(vy).

The notion also extends in the obvious way to subsets of other Polish spaces.

A subset X of R is called analytical if there exists a closed subset F of the product
space R x N such that X is the projection of F, that is X = {«o|a € R|FB[F(«a, 3)]}.
BEvery strictly analytical set is analytical, but the converse is false, even if we restrict
ourselves to inhabited analytical sets. The difference between strictly analytical and
analytical sets is of the same kind as the difference between spreads and closed sets.
Observe that every subset of R that really coincides with a spread is strictly analytical.
That is because for every subspread B of A there exists a retraction rg from N onto
B, as we saw in Section 1.8.2.

2.7 A third proof

We want to establish the second level of the Borel hierarchy a third time. In Section
4, we intend to generalize this third proof to higher levels of the hierarchy. We first
give another characterization of the classes TI3(N) and Z5(N).

2.7.1

Given subsets X and Y of Baire space A we define:

X XY (“X reduces to Y”) if and only if there exists v in Fun such that v(0) = 0
and for all a, « belongs to X if and only if v]a belongs to Y.

So X reduces to Y if there exists an effective method to translate every question:
“does « belong to X7 into a question “does 3 belong to Y7

This notion is called “Wadge-reducibility” in classical descriptive set theory. Its ana-
logue in recursion theory is called “many-one-reducibility” or m-~reducibility. We use
the unadorned expression “reducible” as no other notion of reducibility figures in this

paper.
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2.7.2

Given a class K of subsets of Baire space N and an element X of K we say that X
is a complete element of K (“X is K-complete”) if and only if for every subset ¥ of
N, Y belongs to K if and only if Y reduces to X.

2.7.3

We again consider the subsets As and Es of A'. We defined them in Section 1.8.3,
as follows: As := {a]Vm3n[a/™(n) # 0]} and Es := {a|3mVn[a™(n) = 0]}. We claim
that Ag, Es are Hg—complete, 28—complete, respectively, and we leave the simple proof
of this fact to the reader.

Recall that (Az, F2) is a complementary pair of subsets of A in the sense of Section
1.10, that is, every element of A5 is apart from every element of Es.

2.7.4 Theorem:

Every function from N to A that maps Es into Ay also maps
some element of As into As.

Proof: Let g be a function from A to N that maps Es into As.

(We always assume that a (continuous) function from A to A is given to us by means
of some code for that continuous function, in the sense of Section 1.14. We may as
well say: g belongs to Fun and ¢g(0) = 0.)

Define ag := 0. ap belongs to Ea, 50 glap belongs to A; and we determine ng such
that (glao)®(no) # 0. We also determine myg such that, for all «, if @mg = apmyg then
(91a)5(no) = (glao)(no).

Define aq := @myg * (1) x 0. Then (a1)%°(mo) = 1 and a1 belongs to Ea, so glo
belongs to Ay and we determine n; such that (glag)!(n1) # 0. Determine m; such
that m; > myp and for all «, if @m; = @y mq, then (gla)! (n1) = (glaz) (n1).

Define g := @ymy = (1) * 0.

Continue in this way.

Let « be such that, for each k, @m; = @pmy.

(« is the limit of the sequence ag,aq,...).

Then, for every k, a*(my) = 1 and (g|a)*(ng) # 0, so both a and gla belong to As.
X

2.7.5

The set A is strictly analytical. We define a function fo from A to A such that A
coincides with the range of fo. Let a belong to N. We define (f2]a)(0) := 0 and for
all m,n, (fola)™(n) ;== a™(n+2) if n # a™(0), and (fo|)™ (a™(0)) := &™(1) + 1.

2.7.6 Theorem:

Every function from N to A that maps As into Ey also maps
some element of Es into Es.
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Proof: Let g be a function from A to A that maps As into Es. We now use the
function fa, defined in Section 2.7.5.

For all o, fa}a belongs to Aa, so g o fla belongs to Es, and there exists n such that
(g0 fola)" = 0.

We use the continuity principle and determine m,n such that for all «, if @m = 0m
then (g o fala)™ = 0. Now suppose « satisfies the following conditions: «(0) = 0 for
all j <m:af = (go f2|0) and o™ = 0. L

Observe that for every g there exist 3 such that Sm = Om and (f2|3)q = @y, so for
every q there exists € such that g = @g and (gle)” = 0. Therefore both o™ = 0 and
(gla)™ = 0 that is, both « and gla belong to Es.

X

We conclude this Section by showing how to extend Theorems 2.7.4 and 2.7.6 to other
Polish spaces.

2.7.7 Corollary:

Let d : N x N — R be a (pseudo-)metric such that the corresponding Polish space
X (d) is perfect; that is, for every m, n we may determine p such that 0 < d(m,p) < %
There exists a pair A, E of subsets of X (d) such that:

AisTIS, Eis £Y, (A, E) is a complementary pair and, for every X9 subset C of X (d),
if A C C, there exists & in C' N E, and for every I subset D of X(d), if E C D,
there exists a in D N A.

Proof: We may conclude from theorems 2.7.4 and 2.7.6 that the corollary holds if
X (d) is Baire space N. We take A = As and E = E,. Suppose now that X(d) is
some perfect Polish space.

One may construct a strongly injective (continuous) mapping 4 from N into X (d).
(So for all «, B, if a# 3, then i(a)#4i(5)).

It is important now that for every open subset C of A there exists an open subset D
of X(d) such that i(C) = «(N) N D. As i is strongly injective it follows that for every
complementary pair of subsets Cp, C; of AV, consisting of an open and a closed subset
of NV, there exists a complementary pair (Dp, Dq) of subsets of X(d) consisting of
open set Dy and a closed set D, such that i(Cp) = ¢(N) N Dg and i(Cy) = i(N)N Dy.
It is not difficult to see that there exist also a I3 subset A of X (d) and a B9 subset
E of X(d) such that (A, E) is a complementary pair and i(A4s) = ¢(N) N A and
i(B») = i(N) N E.

Suppose now that C' is a 35 subset of X(d) and A C C then i~'(4) C i~(C) and
i7HC) is BY, and Ay Ci~'(C), so there exists a in i~ (C) N Es, so i(a) will belong
to CNE.

In a similar way one proves if D is a TI3 subset of X (d) and E C D, then there exists
ain DN A.

X
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3 The many kinds of countable unions of closed sets

3.1 Some subsets of the set R of real numbers

3.1.1 The union of the two closed real segments [0,1] and [1,2] is not a
closed subset of R

Suppose [0,1] U [1,2] is a closed subset of R. It is easy to see that then [0,1] U [L,2]
really coincides with [0,2]. So for every « from [0, 2] we may decide:

« belongs to [0, 1] or « belongs to [1,2]. There exist however numbers « in [0, 2] for
which we are unable to take this decision, numbers that, as one sometimes says, waver
around 1. We now construct such a number.

Let p: N — {0,1,...,9} be the decimal expansion of 7. Define « in [0, 2] as follows.
For each n, if there is no k < n such that for every i < 99, p(k +1i) = 9, then a(n) :=
M1—L, 14+ L7 andif ko <nis the least k such that for every i < 99, p(kg +i)=9

then, 1f ko is even, a(n) :=="1 - E’ - kf—' and if ko is odd, a(n) := "1+ kf,l—}— L7
We have no proof that « belongs to [0, 1] and we have no proof that « belongs to
[1,2].

Using the continuity principle we obtain a contradiction from the assumption that
[0,1] U [1,2] coincides with [0,2], as follows. Consider the spread consisting of all
regular real numbers « such that «(0) = [0,2]. (Regular real numbers have been
introduced in Section 1.11.4.) This spread is a fan that really coincides with the
closed segment [0, 2].

The sequence 70,27, 7%, 127,73 27 belongs to this fan. Applying the continuity
principle we find m such that either, for every regular o, if a(m) =71~ ,)m . 14 55 ,)m s
then a belongs to [0,1], or, for every regular real a, if a(m) =1 — 55,1+ 5=, then
« belongs to [1,2]. This is an obvious contradiction.

It is not difficult to see now that the set [0,1] U [1,2] is not a Gs-set either. For if
@ is an open set containing [0, 1] U [1,2], also [0, 2] forms part of G. Consequently, if
[0,1] U [1,2] forms part of a G5 set X, also [0, 2] forms part of X, and [0,1] U [1,2]
does not coincide with X.

3.1.2 The set A := {0,1 ..} is not a closed subset of R

’ 2 ’ 3 9.
Observe that we may decide, for each rational interval, if it contains an element of
A or not. Therefore, the set of all real numbers « such that for each n, the rational
interval coded by a(n) contains at least one member of A, is a closed subset of R. We
call this set the closure of A, notation A. The set of all regular real numbers belong-
ing to A is a spread. Suppose that A is a closed subset of R, then every member of
A coincides with a member of A. Using the continuity principle we determine m,n
such that either every element of [0, 7] N A coincides with 5k, or every element of
[0, 5%] N A coincides with 0. Both alternatives are false.

Observe that, for every real number «, if « is really apart from 0, then « belongs to
A if and only if « belongs to A. As, for every real o, ~—(a#*0V a = 0) we find
that A coincides with the set of all real numbers « such that =——(a € A), that is, A
coincides with the double complement A°¢ of A.
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(So A and A have coinciding complements, and are, using a term of Brouwer’s, con-
gruent subsets of R).

Now let, for every subset X of R, Perhaps(X) be the set of all real numbers y such
that there exists x in X with the property: if y#«, then y belongs to X. It is easily
seen that Perhaps(X) forms part of X but the converse is not generally true. There
are subsets X of R such that the gap between Perhaps(X) and X is very wide, for
instance the set Rat of all real numbers coinciding with a rational. Starting from
Rat, iterating the operation Perhaps, and taking countable unions at limit stages,
one obtains uncountably many subsets ¥ such that RatC ¥ C Rat®®. (see Veldman
1999).

Observe that A behaves tamely in this respect. A coincides with Perhaps(4), and
Perhaps(A) coincides with A, so A has “perhapsity 17, in the sense of Veldman 1999.
As we will see in a moment, there nevertheless exists uncountably many subsets Y of
R with the property A CY C Perhaps(A) = A°°.

3.1.3 The set A := {0,1, %, %, ... } does not coincide with a finite union
of closed sets

We have seen that A is not closed and proceed by induction. Observe that no infinite
and decidable subset of A is closed. Let n be a positive integer and suppose we have
verified that no decidable infinite subset of A coincides with a union of n closed sets.
Now assume Cg,C1,...,Cy, are closed sets such that A = CoUCL U---UCC,. Using
ACy o we determine « such that for each p, the number ,;L_1 belongs to Cop)-

We claim the following: for every m there exists ¢ > m such that a{q) # 0.

Let us prove this claim.

Assume that, for some natural number m, a(m + 1) = 0. We define a real number
as follows.

B(0) :=T70, mig—', and for every ¢, if there exists j < g+ 1 such that a(m+j+1) =0,
then 3(q + 1) := "R*(8(g)), R*(B(g)) " and if, for all j < g+ 1, alm +j+1) # 0

then B(g+1) :="0, m+1q+r"'. Observe that the real number 3 belongs to Cg, and also

to A. So either 3 coincides with 0 or, for some p, 3 coincides with %. If however

coincides with 0, then each number (11+1’ where ¢ > m, belongs to Cg. So A coincides

with Co U {1, 3,... #H} and is a closed set. But, as we saw in the previous Section,

A is not a closed subset of R. We conclude that for some p, 3 coincides with 113, S0
there exists ¢ > m such that a(g) # 0.
This ends the proof of our claim.

We now construct a strictly increasing v such that, for each p, a(v(p)) # 0 and
consider B := {5577 |p € N} U {0}.

Observe that B coincides with (BN C)U (BN Cy)U---U(BNC,). For each i,
1 <i<n, welet D; be a decidable subset of Q x @) such that, for every a in R, «
belongs to C; if and only if, for each n, the pair (L*(a(n)), R*(a(n))) belongs to D
(cf. Section 1.11.6). Observe also that each set B N C; contains every real number
o such that, for each n, the rational interval (L*(a(n)), R*(a(n))) both contains a
member of B and belongs to D;. For such a number belongs itself to C; and therefore
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to A, and we may decide if it belongs to B. The assumption that it does not belong to
B easily leads to a contradiction. Observe also that we may decide, for every rational
interval, if it belongs to D; and contains a member of B. Therefore each set BNC; is
a closed subset of R, and this contradicts the induction hypothesis. We conclude that
A is not a union of n closed sets and that the same is true for every infinite decidable
subset of A.

3.1.4 Theset A := {0,1, ;, ;, . } is not a countable intersection of open
subsets of R

It suffices to observe the following: if G is an open set containing A, there exists n

such that for every p > n the number 11—3 belongs to GG, and therefore G contains A.

So, if Go,G1, ... is a sequence of open sets and A C () Gp, also A C (] Gy, and,
neN neN

as A does not coincide with A, neither does [\ G-
neN
Like the set [0, 1] U [1, 2], the set A, although in classical eyes a closed subset of R, is

intuitionistically an example of an Fj,-set different from every Gjs-set.

3.1.5 The open real interval (0,1) differs from every finite union of closed
subsets of R

The proof of this fact is similar to the proof of the fact that A := {0,1, },, é, -}
is not a finite union of closed sets. (0,1) itself is not closed, and we proceed by
induction. Suppose that, for some positive integer n we have verified that (0,1) is not
a union of n closed sets. Assume now that Cy, Cy,...,C, are closed sets such that
(0,1)=CoUCLU---UC,.

Applying an axiom of countable choice, we determine « such that for each p, the
number — belongs to Cq(p). Using the induction hypothesis we prove that there
are mﬁmtely many p such that a(p) = 0 and we construct a strictly increasing v such
that, for each p, (v(p)) = 0. Each number belongs to Cy, and Cy is closed,

)+ )+1
so 0= I}irolé W@)H belongs to Cp and therefore to (0,1).
Contradiction.

3.1.6

We have seen, in Section 3.1, that there exist non-closed subsets of R that coincide
with a union of two closed sets. Do there also exist unions of three closed sets that do
not coincide with any union of two closed sets? (Observe that the set [0, 1]U[L, 2]U[2, 3]
is the union of [0,1] U [2, 3] and [1,2] and each one of the latter two sets is closed).

3.1.6.1 We again consider the set A :={0,1,1,3,...}.

Suppose B, (C are decidable, infinite and mutually disjoint subsets of A such that
A=BUC.

We claim that the set BUC is not closed. For suppose it is. Then BUC will coincide
with A, so every member of A will belong to either B or C, and using the continuity
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principle we find m such that either [0, 5] N A forms part of B, or [0, 7] N A forms

3 om
part of C, and both alternatives are false.

We claim that for every positive n, if Bg, By, ... , B, are decidable, infinite and mu-
tually disjoint subsets of A and A = ByUB; U---UB,,, then BUB,;U---UB, is a
union of n+ 1 closed subsets of R not coinciding with any union of n closed subsets
of R. We verify this claim as follows.

Suppose that Cy, C1, ..., Ch—1 are closed sets such that Bo U B; U---UB,, coincides
with Co UC; U ---UC,_1. As each set B; coincides with a spread, we ﬁnd using
the continuity principle, for each i < n + 1 numbers m;, p; such that [0, 5 ] N B;
forms part of Cp,. Without loss of generality we assume py = pi = 0 and define
m = max(mg,m1). So [0 ,,)—m] (Bo U By) forms part of Cp. As Cy is closed, also
[0, ,)m] (Bo U By) forms part of Cy, and therefore also of BoU By U---U B,,.
Reasoning now as in the first paragraph of this Section, we find p, ¢ such that [0, 2%,] N

(Bo U By) forms part of B; and thus we obtain a contradiction.

3.1.6.2 Suppose that B, C are decidable and infinite subsets of A.
The continuity principle implies: if B C C then there exists m such that [0, ,)m] NB C

C, so there exists n such that for every p > n, if Il) belongs to B, then & m belongs to
C.

3.1.6.3 Suppose that By, By, ... is an infinite sequence of mutually disjoint infinite

decidable subsets of A. One may verify that the set |J B, is a countable union of
neN

closed sets, congruent with A, but not coinciding with either A or A or with any finite

union of closed subsets of R.

3.1.6.4 Given any infinite and decidable subset B of A\{0} := {1,%,...} we de-
termine a strictly increasing - such that B := { n € N} and deﬁne B

{5mymln € N} and B" := {5 qyyIn € N

We now construct a function associating to each a from the set Sege of all (code
numbers of) finite sequences with values 0,1 a subset A4, of A as follows:

Ay = A\{0} and, for each a in Seqa, Agwoy = (44)" and Agyry = (44)".

Suppose B,C are subsets of A. We say that A is an almost-subset of C if all but
finitely many members of B belong to C.

Suppose By, By, ... is a sequence of infinite, decidable subsets of A, and for each n,
B, is an almost-subset of B,

We define a sequence by, by, ... of natural numbers:

for each n, b, is the least element of B,, that belongs to every By, k < n. We call
the set {bglk € N} the almost-limit of the sequence By, By, ..., notation &I&(Bn)

v(n)+1§

Observe that AQI&(B,L) is an almost-subset of each set B,,.
n

We now define a map associating to each « in Cantor space C a subset A, of A as
follows: A, := I%I&(44<a(0)7,,_7a(n_1)>). Observe that for all «, 3 in C, if a#3, then
n

A, N Ag is a finite set. On the other hand each A, is infinite and A C |J 4, C A.
ael
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Observe also that for all a, 3 in C, if a#/3, then A, U A\A4, # A5 U A\Ag whereas
for each o, A C A, U A\A, C A.

We may also associate to every stump o and every infinite decidable subset B of
A\{0} an infinite subset Blo] of B, as follows:

(i) B[0]:=B

(ii) for each stump o # 0 and each B we first build a sequence B(®, B . . as
follows: B(®) := B and, for each n, Bt .= B("[g"],
We then define: Blo] = (AL (B

One may verify that for all stumps o,7, if ¢ < 7, then A[7] is an almost-subset of

Alo], but A[o]\A[7] is infinite, so A[o] U A\ A[o] is different from Afr]U A\A[r]. On
the other hand, each set A[o] U A\ A[o] contains A and is part of A.

3.2 Some subsets of Baire space N
3.2.1

Given subsets P,Q of N we let D(P,Q) be the set of all a such that either P(a?)
or Q(al). We call D(P,Q) the disjunction of P and Q. A subset X of N reduces
to D(P,Q) if and only if there exist subsets Xo, X7 of A such that X = X, U X3
and Xg, Xy reduce to P, @, respectively. If there exists « such that —-Q(«a), then P
reduces to D(P, Q).

3.2.2

Given a subset P of A and a positive integer n, we let D" (P) be the set of all « such
that 3k < n[P(a®)].

A subset X of N reduces to D™(P) if and only if there exist subsets Xo, X1,..., X1
of NV, each one of them reducing to P, such that X = |J Xj.

k<n
Consider 4; := {a|¥n[a(n) = 0]} = {0}.
Ay is a complete element of the class of closed subsets of AV, that is, a subset X of V'
is closed if and only if X reduces to A;.
It is not difficult to see now that D™(A4,) is a complete element of the class of unions
of n closed sets.

3.2.3 Theorem:

(i) D?*(4;1) is not closed, and
(ii) for each n > 1, D" (A4;) is not a union of n closed sets.

Proof:



J.2 Oome subsets o1 baire space N

(i) First observe that for each finite sequence s one may decide if there exists «
in D?(A;y) such that s is an initial part of a. So, if D*(A;) is closed, D?(A;)
coincides with the set of all & such that for every m, a®m = Om or alm = Om.
Let us call the latter set D?(A;), the closure of D?(A;).

Observe that D2(Ay) is a spread and that 0 belongs to D2(A;).

Assuming that D2(A;) coincides with D?(A;), we apply the continuity principle
and find m such that for every a in Ds(A;), if @mn = 0m, then a® = 0, or for
every « in Do(Ay), if @m = Om, then a! = 0. Both alternatives are false.

(ii) Suppose, for some n > 1, that D"T1(A;) coincides with Co U---U C,,_1, where
each C; is a closed subset of V.

Define for each j < n+ 1, S; = {a|a’ = 0} and observe that each S; is a spread

containing 0 and that D"*1(4;) coincides with |J S;.
j<ntl
Applying the continuity principle n-+1 times, we find for every j < n+1 numbers

mj, i; such that every a in S; such that @m; = Om; belongs to C;,. Without
loss of generality we assume ig = 41 = 0 and we define m := max(mqg, m1).

So every « in D?(A;) such that @m = 0m belongs to Cp. But then every a in
D?%(A;) such that @m = Om will belong to Cp, and therefore to D"*1(A4;), and
reasoning as in (1) we find a contradiction.

X

3.2.4

Given a subset P of N' we let Un(P) the set of all @ in A such that for each n,
P(a™). Using an axiom of countable choice one proves that a subset X of N reduces

to Un(P) if and only if there exists a sequence Xp, X1, ... of subsets of A" such that

X = ) X, and each X,, reduces to P.
neN

Theorem: For each n, D" (4;) does not reduce to Un(D"(4;)), that is, D" (4,)
does not coincide with any countable intersection of unions of n closed sets.

Proof: We consider the case n = 2, leaving the other cases to the reader.

Consider the set AM; of all @ in N that assume at most one time a value different from
0, s0 AM; := {ajfor all m,n, if a(m) # 0 and a(n) # 0, then m = n}. Observe that
AM; is a spread and that AM; forms part of the spread D3(A4;). Remark that for
every a in AMy, if a#0, then « belongs to D3(A;).

Let Co,0,C01,C1.0,C1,1,-.. be asequence of closed subsets of A such that D?(4,) =

) CrnoUC, 1. Arguing as in Section 3.2.3, we find for each n some m, ¢ such that
neN

for all & in D3(A4,;), if @m = Om, then « belongs to Cp, ;. So for every a in AM;,

either @m = Om and «a belongs to C,, o UC,, 1, or @m # 0m, and « belongs to D?(A4;)

and therefore to C,, 0 U Cy, 1. We conclude that AM; is contained in [} Cpo U Cy 1
neN

and therefore in D3(A;). We now use the continuity principle and find m, i such that

for all a, if & belongs to AM; and @m = 0m, then o' = 0. Contradiction.

X
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3.2.5

For every subset X of N we let Perhaps(X ) be the set of all & such that there exists
B in X with the property if a# 43, then X (a).

(We made some remarks on this operation in Section 3.1.2).

We now prove: Perhaps (D?(A1)) coincides with D?(Ay).

For suppose a belongs to D?(A;). Let 3 be the sequence such that 5(0) = «(0), and
(3% = 0 and for each n > 0, 8" = a”. One verifies easily that 3 belongs to D?(A4;),
and if a#f, then o' = 0, and «a belongs to D?(A;). Therefore, D?(4;) is part of
Perhaps(D?(Ay)).

The converse is obvious.

We now define, for every subset X of A" and every positive integer n, Perhaps, (X): it
is the set of all & such that there exists a finite sequence 3y, 81, ... , Bn-1 of elements
of X with the property: if for every j < n, a#3;, then X(«).

We prove: for each n, Perhaps, (D™ (A;)) coincides with D"F1(A;).

For suppose « belongs to D*+1(A;). Let S, 51,...,0,-1 be a finite sequence of
elements of D™*1(A;) such that, for every j < n, (3;)7 = 0 and, for every k # 7,
(B;)F = oF and B;(0) = «(0). If for every j < n, a#f;, then o™ = 0 and « belongs
to Dn+1(441).

Theorem: D3(A;) is not a subset of Perhaps(D?3(4,)).

Proof: Consider the set AM> of all o that assume at most two times a value different
from 0.

Observe that AMs is part of D3(A;), and is a spread containing 0. Now assume
D3(Ay), and therefore also AMs, is a subset of Perhaps(D?(A1)).

Observe that for every a in AMs one may determine ¢ < 3 and [ such that 8* = 0
and: if a#/3, then a belongs to D?(A;).

Apply the continuity principle and determine m, i such that for every « in AM3 such
that @m = Om there exists 3 such that 3* = 0, and if a3, then a belongs to D?(4;).
We claim that now AM; is a subset of D®(A;).

Without loss of generality we may assume ¢ = 0. In order to prove our claim we
construct a function f from N to N such that for all a, (fla)m = Om and, for
every j # m+ 1, (f(a))o(j) =0 and (fla)°(m + 1) = 1 and (f|a)! = Om * o' and
(fla)? = 0m * a?,and (f|a)(0) = 0.

Observe that for every o in AM7, fla belongs to AMs and f(a))O#Q, and (f]a)m =
0m, therefore f|a belongs to D3(A4;) and so o' =0 or a? = 0.

So for every « in AM; either o' = 0 or a? = 0.

By a reasoning similar to the one used in Section 3.2.4 we obtain a contradiction.

X

Similarly one proves, for each n > 1, that D"+2(A;) is not a part of Perhaps,, (D"?(A4;))
but coincides with Perhaps,41 (D" 1?(A1)).

Using the terminology introduced in Veldman 1999 one might say that D™*2(A;)
has perhapsity n + 1 but not perhapsity n.

Let us take a closer look at these perhapsities.
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3.3 An interlude on perhaps
3.3.1 Perhapsive subsets of V'

We now introduce a binary operation Perhaps on the class of subsets of A. Given
subsets X,Y of A such that X C Y we let Perhaps(X,Y) be the set of all o such
that there exists 4 in X with the property: if a# 3, then a belongs to ¥ (“a belongs
to X, perhaps to Y7).

Y is a subset of Perhaps(X,Y), but the converse may be false.

There is a connection with the unary operation Perhaps that we considered in Section
3.2.5 (and earlier, when we were studying subsets of R, in Section 3.1.2). For every
subset X of A, Perhaps(X) = Perhaps(X, X). A subset X of AV is called perhapsive
if and only if X coincides with Perhaps(X). (In Veldman 1999, following Waaldijk
1996, we used the term “weakly stable” for “perhapsive”). Every II5 subset of N is
perhapsive. Let us prove this. Let Go, G1,G2,... be a sequence of open subsets and
consider B = {7} Gy, Suppose 3 belongs to B and « satisfies: if a# 4, then « belongs

neN
to B. We clairrel that « itself belongs to B. For, given any n, calculate m such that
every v such that m = Sm belongs to G,,. Now consider @m and fm. If am = fm,
then « belongs to G,,. If @m # Bm, then a3, and « belongs to B and so to G,,. So
« belongs to every G, and therefore to B.
A similar argument shows: Every II1 subset of N is perhapsive.
(A subset X of NV is called TI7 or co-analytical if and only if there exists a closed
subset F' of X such that X = {a®|a € F}, see Section 6.5.)
We may conclude from Section 3.2.5 that the set D?(A;) is not perhapsive. Therefore,
this set is not co-analytical. (Observe that every set that reduces to a perhapsive set
is itself perhapsive.)
Remark that D?(A;) is a fairly simple Borel set. (In classical descriptive set theory
every Borel set is co-analytical).

3.3.2 The perhapsive closure of a countable and dense subset of A/

3.3.2.1 We want to study iterations of the operation Perhaps.
We introduce, for every subset X of A" and every stump o, a subset P(g, X) of NV, as
follows: P(1, X) = X, and, for every non-empty stump o,
P(o, X) = Perhaps(X, |J P(0", X)).
neN
(This definition is a bit different from the one used in Veldman 1999.

Let us compare the two definitions.
We define for every subset X of A/ and every stump o a set P*(ao, X) as follows.
P*(X) = X and for every non-empty stump o, P*(0, X) = {J Perhaps(X, P*(c™, X))

neN
P* coincides with the operation called P defined in Veldmgn 1999.
One may verify that for each o, P*(0,X) C P(0,X) and also that, for each o,
P(o,X) C P*(S(0),X). Let us prove the latter fact. We use induction and as-
sume that for some non-empty stump o, for each n, P(a”, X) C P*(S(¢™), X). Then
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P(o, X) = Perhaps(X, |J P(0”, X)) C Perhaps(X, |J P*(S(¢"), X)) C Perhaps
neN neN

(X, (0, X)) = P*(S(0), X).)

One may prove that for all o, 7, if ¢ < 7, then P(o, X) € P(r, X).

It may occur that for all o,7, if ¢ < 7, then P(0, X) is a proper subset of P(r, X).

Examples have been given in Veldman 1999.

One may take X = Fin = {« € X|3m¥n > mf[a(n) = 0]}, the set of all o that

assume only finitely many times a value different from 0. Generalizing this example,

one may consider any countable and dense subset D = {dp, dy,da, ...} of Baire space

N. Using Brouwer’s thesis one may show that for every a, a belongs to some P(o, D)

if and only if for every ~y there exists n such that @(v(n)) = d,, (v(n)) (that is, if we

express ourselves metrically, the distance between « and d,, is less than =7, where

we are using a widely used metric on A, so, one might also say: evefy attempt to

give evidence that « is apart from every d,, will fail).

We do not prove this fact as the proof is similar to the proof of its particular case

given in Veldman 1999.

3.3.2.2 Let us introduce some notation. Given a countable and dense subset D =

{do,dy1,da,...} of N, let D* be the set we considered a moment ago, consisting of

all a such that for every + there exists n such that @(y(n)) = d,(y(n)). The just-

mentioned fact may now be stated more shortly as follows: D* = {} P(e, D).
ceStp

D* might be called the perhapsive closure of the set D, for the following reasons:

(i) D € D* and Perhaps(D, D*) = D*.
(ii) For every subset Y of N, if D CY and Perhaps(D,Y) =Y, then D* C Y.

(As to (ii), if Y € N satisfies the requirements, one proves by induction, for every o,
P(o, D) C Y. Using Brouwer’s Thesis, one concludes D* C Y.

We claim that the set D* is perhapsive, that is: Perhaps(D*, D*) = D*.

In order to prove this, we need the following remark:

for all subsets X,Y,Z of N: if X CY and Perhaps(X,Y) C Z, then

Perhaps (Perhaps(X,Y),Z) C Perhaps(X, Perhaps(Y, Z))

Let us prove this remark. Suppose «a belongs to Perhaps (Perhaps(X,Y), Z) and de-
termine 3 in Perhaps(X,Y") such that if a#03, then « belongs to Z. Also determine
~in X such that, if 3#~, then 3 belongs to Y. Suppose now: a#; then either a#/3
or f#+, so either « belongs to Z and therefore to Perhaps(Y, Z), or 3 belongs to Y,
80 a belongs to Perhaps(Y, Z).

Now observe: Perhaps(D, D*) C D*, and assume, for some o, for each n,
Perhaps(P(o™, D), D*} C D*. By the above remark, for each n:

Perhaps (Perhaps(D,P(¢", D)), D*) C Perhaps(D, Perhaps(P(o”, D), D*) C
Perhaps(D, D*) = D* and also Perhaps ( |} Perhaps(D,P(o”, D), D*) C D* g0 Per-

neN
haps (P(e, D), D*) C D*.
We conclude that for every o, Perhaps(P(e, D), D*) C D*, and using Brouwer’s The-
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sis again, Perhaps(D*, D*) C D*, that is: D* is perhapsive.
Obviously, D* is the least perhapsive set X such that D C X.

3.3.3 A remark on subsets of NV of finite perhapsity

In Section 3.2.5 we considered, given a subset X of N and a natural number n, the
set Perhaps,, (X), consisting of all « for which there exist elements fo, 1. .. , Bn-1
of X with the property: if for all j < n, a#43;, then « belongs to X.

It is easy to see that Perhaps, (X) is part of P(n, X) but we have no reason to assert
the converse.

3.3.4 Subsets of N of bounded perhapsity

Given a subset X of A/ it may happen that, for some stump o, P(S(c), X) coincides
with P(e, X). We then say that X has perhapsity o, and also, disregarding o, that
X has bounded perhapsity. (We are using the latter expression in a more natural and
slightly less strict sense than in Veldman 1999).

Suppose that P(o, X) coincides with P(5(¢), X) and consider Y = P(o, X). Observe
that X CY and Perhaps(X,Y) =Y.

One proves by induction that for every 7: P(r,Y) C Y.

It is also true, that for every Z C N if X C Z and Perhaps(X,Z) C Z, then Y C Z.
So Y deserves to be called the perhapsive closure of X. As in Section 3.3.2 we may
prove that Y is perhapsive.

If X is not of bounded perhapsity we do not see how to define a perhapsive closure
of X, except of course in some special cases see for instance Section 3.3.2.

If X has perhapsity o, and for every 7, if X has perhapsity 7, then ¢ < 7, we say
that X has perhapsity exactly 7.

In general, we may not expect to be able to find for any given X of bounded perhap-
sity, a stump o such that X has perhapsity exactly o, as not every inhabited set of
stumps has (in this sense) a least element.

If both X,Y are subsets of N of bounded perhapsity we say that X has lower per-
hapsity than Y if for each 7, if P(S(7),Y) = P(7,Y) there exists ¢ < 7 such that
P(S(0),X) =P(0, X).

3.4 Sets of larger and larger perhapsity and larger and larger
complexity

3.4.1

In Veldman 1999 we have shown how to obtain sets of arbitrarily large but bounded
perhapsity. The sets we found were analytical sets and (probably) not Borel. We
want to show now that we may find such sets within the class 3.
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3.4.2

We define, for every stump o, a subset C, of N, as follows: C; := A; = {0} and for
every non-empty stump o, and every o, a belongs to C, if and only if either o® = 0
or there exists n such that n+ 1 is the least k > 0 such that a®(k) # 0 and o' belongs
to C,xm+n. It is easy to see that each set C, belongs to 9.

Observe that a classical mathematician would believe every C, to be closed.

3.4.3

A subset X of Baire space NV is called closable if and only if for every finite sequence
s of natural numbers one may decide if there exists o in X starting with s, that is,
such that Jnfan = s].

If X is closable we let X denote the set of all a such that for every n there exists 3
in X such that @n = Bn. X is a spread and is called the closure of X.

If X is closable, then for every o, P(o, X) C X, and P(o, X) itself is also closable and
P, X) = X.

It is easy to see that each one of the sets C, introduced in 3.4.2 is closable.

3.4.4

We claim that for each o, C, is contained in P(a, Cy).

(We may conclude then that P(S(0), C,) coincides with P(o,C,), so C, has perhap-
sity o.)

We prove this claim by induction.

Observe that Cy is closed and coincides with P(1, Cp).

Now assume that ¢ is a non-empty stump and for each n, C,» coincides with P(a™,Cyn ).
It follows that, for each n, the collection of all & in C,, such that n+1 = pk[a® (k) # 0]
is contained in P(c® (1) ().

We now prove that C, coincides with P(a, C,).

Assume that a belongs to C, and define 3 such that 3(0) := «(0) and 3° := 0 and
for each n > 0, A" := ™.

Observe that 3 belongs to C,, and, if a3, then a°#0, and a belongs to P(¢*("+1) (),
where n + 1 is the least & > 0 such that a®(k) # 0. So a belongs to P(a,C,).

We may conclude that, for each o, C, is the perhapsive closure of C,, that is the
least perhapsive set containing C,;.

3.4.5

We now prove, for every non-empty stump o, for every 7, if C, has perhapsity 7, then
7 is non-empty, and for every m there exists n such that C,» has perhapsity 7. So
assume that o is a non-empty stump and C, has perhapsity 7.

Let us first verify that 7 is non-empty.

So suppose C, has perhapsity 1. Then Perhaps(C,) coincides with C,, that is, C,
itself is perhapsive. Therefore every set P(r,C,) is part of C,, in particular P(o, C,)
is part of C,, so C, is part of C, and C, is closed.
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Now consider E = {a|AM;(a®) A o' = 0} and observe that E C C,. Therefore E
is part of C, and for every « in E we may decide a® = 0 or 3n[a®(n) # 0]. Using
the continuity principle (and the fact that E is a spread) one obtains a contradiction.
We conclude that 7 is non-empty. As C, has perhapsity 7, P(r,C,) is the perhapsive
closure of C, and coincides with C,. So for every a in C, we may determine 3 in C,,
such that, if a# 3, then « belongs to some set P(v",C,).

Observe that then, for every a in C, we may determine i such that either i = 0 and
there exists 3 such that 3° = 0 and if a#/3, then a belongs to some set P(r", C,), or
i > 0 and there exists 3 such that 8°(i) > 0 and if a#/ then a belongs to some set
P(r", Cy).

Now we use the fact that C,, is a spread and 0 belongs to C,,. We apply the continuity
principle and first assume that we find p, ¢ > 0 such that for all « in C, if @p = Op,
there exists 3 such that 4%(i) > 0 and if a#/3, then « belongs to some set P(r7,C,).
Applying the continuity principle once more we find ¢,n (¢ will be greater than
J(0,i — 1)) such that, for all a in C,, if @g = Og, then a belongs to P(r",C,). It
follows that C, itself is contained in P(7", Cy,) and, for every m, Cym is contained in
P(r", Cym ).

Next, we assume that we find p such that for all « in C,, if @p = Op, there exists
3 such that 3° = 0 and, if a#3, then « belongs to some set P(r7,C,). Let m be
a natural number. Consider the set of all o in C, such that .J(m,p) is the least k
such that a®(k) # 0 and @p = Op. Observe that this set is a spread and that every
element of it belongs to some set P(7",C,). Consider the sequence 3 in AM; such

that 3°(J(m,p)) = 1 and determine ¢,n such that ¢ > J(m,p) and for every « in
C,, if Bq = @q then o belongs to P(r™, Cy).

Observe that now, for every «, if 3¢ = @g and o' belongs to Cym, then « belongs to
P(r™,C,), and therefore C,= will be part of P(+", Cym ), so C,m has perhapsity 7.

3.4.6

We conclude from the result in Section 3.4.5:

For every o, 7, if C, has perhapsity 7, then o < 7.

(We use induction. If C, has perhapsity 7, and ¢ is non-empty, then 7 is non-
empty and for each m there exists n such that C,~ has perhapsity 7", and therefore,
according to the induction hypothesis, o™ < 7"; 80 ¢ < 7).

Therefore, every C,, has perhapsity exactly o.

Also, if ¢ < 7, then C, has lower perhapsity then C,.

3.4.7 Not only growing perhapsity but also growing complexity

We now want to study the question for which ¢, 7 the set C, reduces to the set C;.
We intend to show for all stumps o, 7, if ¢ < 7, then C, reduces to C,, and if o < 7,
then C, does not reduce to C,.

3.4.7.1 We make a preliminary remark. Let, for each n, f, be the function from
Baire space N to itself such that, for every a, f,|a :=0n * a.
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Observe that f, reduces Cy to C4, that is, for every «, & = 0 if and only if f,|a = 0.
We want to construct, for all o,n a function f,, from N to N reducing C, to C,
such that for all & flan = On. We do so by induction. Assume o is a non-empty
stump and for all n, %k a function fy» ; from N to N reducing Cy» to Cpn such that
for all & fon ok = Ok.

We have to build such functions for C, itself.

Let k£ be a natural number and let us construct a function f = f, ;. We take care
that for every a,m,n, if n < k, then (f|a)?(J(m,n)) := 0, and if n > k, then
(fla)°(J(m,n)) = o®(J(m,n — k)). Further, for each m, if, for every n < m,
(fla)°(n) = 0, then (f|a)*(m) = 0. Now assume m,n are natural numbers and
a®(J(m,n)) # 0 and for each p < J(m,n), a®(p) = 0. Then f(a)°(J(m,n +k)) #0
and for each p < J(m,n + k), (fia)o(p) = 0. We define (f§a)1 = for s(mmnin ().
We also prescribe, for every n > 1, (f§a)n =0.

It is not difficult to verify that f satisfies the requirements.

3.4.7.2 We prove, by induction, for every 7, for every o, if ¢ < 7, then C, reduces
to C,. If 7 is empty there is nothing to prove. Assume 7 is non-empty and o < 7,
that is, for every m there exists n such that ¢™ < 7" and C,» reduces to Cyn.
Using an axiom of countable choice we determine v in A and a sequence go, g1, . - -
of functions from N to N such that for every m, g, reduces Cym t0 Coo(my. We
build a function g from N to A such that, for each «, (g|a)°(0) = 0 and for all m,n,
(9la)°(J(v(m),m + n) = a®(J(m,n)), and, (g|e)®(p) = 0 if there are no m,n such
that p = J(y(m),m + n).

We further take care that for every p, for all m,n, if o®(J(m,n)) # 0 and for all
p < J(m,n), a®(p) = 0, then (gla}’ = frrim o © gmla® where g = J(y(m),m + n).
We leave it to the reader to verify that g reduces C, to C,.

3.4.7.3 We now prove, again by induction, for every 7, for every o, if 7 < o, then C,
does not reduce to C,.

Observe that A, = (4 is a closed and a perhapsive set.

As for every non-empty stump o the set C, is not a perhapsive subset of V', C,, does
not reduce to Cy.

(We once again use the fact that every set reducing to a perhapsive set is itself
perhapsive).

3.4.7.4 We now prove the induction step.

Let 7 be a stump such that for every 7' < 7, for every o, if 7' < o, then C, does not
reduce to C,.

We want to prove that for every o, if 7 < o, then C, does not reduce to C,.

So let o be a stump such that 7 < o, and assume that ¢ is a function from A to N/
reducing C, to C,.

We will derive a contradiction.

We first show: for every «, if a® = 0, then (g|a)? = 0.

Assume a® = 0, therefore a belongs to C,, therefore either (g|a)® = 0 or there
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exists n such that (gla)(n + 1) # 0. Assume the latter and calculate m,p such
that m is the least n such that (gla)’(n + 1) # 0 and for all 3, if 3p = @p, then
(0 (m +2) = (ga)(m + 2).

Observe that for each 3, if Bp = @p, then g|3 belongs to C. if and only if (g|8)*
belongs to C,xm+1. Let f be a function reducing C, to C, such that for all 3,
(f18)p = Op. (see Section 3.4.7.1).

The function 3+ (g o f|3)" reduces Cy t0 C,xim+1y and 7' := 7K+ <« 7 < 7 50
we have a contradiction.

We now calculate ¢ such that 7 < 7.

We define a sequence ag, a1, a2, ... of elements of N such that for every m, J{(q,m)
is the least n such that (a.,)%(n) # 0 and (an,)! = 0.

Observe that, for each m, ay, belongs to C,, therefore gla,, belongs to C, therefore
either (g|a,)? = 0 or for some n, (glay,)%(n + 1) # 0.

Assume that m is a natural number and for some n, (g|am,)°(n+1) # 0. Calculate ¢, p
such that ¢ is the least n such that (g|a,,)°(n + 1) # 0 and for each S, if Bp = @,p,
then (g[8)°(t +2) = (glaw )0 (¢ +2).

Observe that for each j3, if 8p = @y, p, then g|3 belongs to C; if and only if (g|8)*
belongs to C.xw+1y. Let f be a function reducing C,q« to Cye such that for all j3,
(f1B8)p = Op.

Now construct a function h, such that for each 3, J(g,m) is the least n such that
(h|B)°(n) # 0 and (h|B)p = @mp and (h|3)! = f|B3. Tt is easy to see that the function
B (goh|B)! reduces Cypa to C,xe41y. Observe 7/ = 7K+ < 7 and 7' < 09, We
have a contradiction.

We conclude that for each m, (gla,,)? = 0.

We have seen earlier that (g]0)° = 0.

We conclude that for every a, if AM;(«), that is, @ assumes at most one time a value
different from 0, then (g]a)® = 0, therefore: C.(g|a), therefore: C,(a), therefore:
o® =0 or a#0.

This again leads to a contradiction, as follows.

AM, is a spread, and using the continuity principle, we determine m such that either
for all a, if AM;(a) and @m = Om, then o® = 0, or, for all a, if AM;(«) and
@m = 0m, then a®#0. Both alternatives are false.

3.5 Comparing C, and D?(A))

Let us consider the set C := Cg(1) that we defined in Section 3.4.2.

Observe that, for each «, a belongs to Cy if and only if either a® = 0 or both there
exist k > 0 such that a®(k) # 0 and o' = 0.

Observe also that, for each «, o belongs to D?(A4;) if and only if either a® = 0 or
a' =0.

We want to show that the sets Cy and DQ(Al) do not reduce to each other.

Let us first assume that D?(A;) reduces to C3 and let g be a (continuous) function
from N to N such that, for every «, a belongs to D?(A;) if and only if gla belongs to
Ca. Observe that D?(A;) is the union of the two spreads {a]a® = 0} and {a]a! = 0}
and that 0 is a common member of these two spreads. Applying the continuity
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principle we find m and for each i < 2, p; < 2 and n; > 0 such that either p; = 0 and
for all a, if & =0 and @m = Om, then (g|a)® = 0, or p; = 1 and for all a, if a* =0
and @m = Om, then (g|a)®(n;) # 0.

Let us first assume pp = p; = 0. We now may reduce D?(A;) to Ay, as follows. Let h
be a function from A to A such that, for all a, (h]a)® = Omxa® and (h|a)! = Omx*al.

Then for all &, & belongs to D?(A;) if and only if (gi(hia))o = 0. As we know, D?(A4;)
does not reduce to A1, so we have a contradiction.

We now assume that pp = 1. We calculate n such that for all «, if @n = On, then
(9]a)°(no) = (g0)°(no) #0.

Observe that for every «, if @n = On, then g|a belongs to Cs if and only if (g|a)! =0,
therefore a belongs to D?(A;) if and only if (g|a)' = 0, that is D?*(A4;) reduces to
Aq; contradiction.

The assumption p; = 1 leads also to a contradiction. We conclude that D?(A;) does
not reduce to Cs.

Let us now assume that Co reduces to D*(A4;) and let h be a (continuous) function
from N to N such that, for every «, a belongs to Cs if and only if hla belongs
to D?(A;). We now consider a sequence vp,7i,... of elements of AM;, (that is
each v, assumes at most one time a value different from 0), such that for each n,
(72)°(n + 1) = 1. Observe that for each n, 7, belongs to C3 and determine p,, < 2
such that (hjy, )P~ = 0.

Also calculate p < 2 such that (hj0)? =0

Consider B := {y|AM;(y)|Vn[y(n+ 1) # 0 — p, = p|}, and observe: B is a spread
and for each v in B, (h]y)? = 0, therefore h|y belongs to D?(A4;) and 7 belongs to
Cs, in particular, either v = 0 or v#0.

Applying the continuity principle we find n such that for all v in B, if ¥n = On,
then v = 0, so for every m > n, p,, # p. We then conclude: for every v in AMy, if
n = On, and v#0, then (h|y)!™? = 0, therefore also (h|0)! ™7 = 0, so for every 7 in
AM;, one has (h|y)!™? = 0, therefore h}y belongs to D?(A;) and ~ belongs to Cs,
therefore v = 0 or y#0.

So, applying once more the continuity principle we find p such that for every v in
AM,, if 7p = Op, then v = 0. Contradiction.

3.6 Productive upper bounds

3.6.1
We want to study the operation £ associating to every sequence Py, P, Ps,... of
subsets of A another subset of A/, called £ P,, and defined by: for all a, o belongs

neN
to & P, if and only if either o = 0 or a#0 and o™ belongs to P,, where n is the
neN
least k such that a®(k) # 0.
It is easy to see that each set P, reduces to the set EN P,. (Given n, we construct
ne
g from N to N such that for every «, n is the least k such that (g|a)°(k) # 0 and

(9le)™ = «. Then g reduces P, to ngN P,).
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So the set £ P, is, in the sense of our reducibility relation, an upper bound for the
neN
sequence Py, P, P, .. ..

It is not its least upper bound. We may form another set, notation: ) P,, as follows:
neN
for every «, a belongs to |} P, if and only if a0 S, that is, the composition of & and
neN

the successor function, or “a without its first element”, or An - a(n + 1), belongs to
P oy-

We might call {} P, the disjoint union or the sum of the sequence Py, Py, Pa, .. ..

neN

One may verify that each set P, reduces to |} P,, and that | P, reduces to every
neN neN

subset @ of N such that each P, reduces to (). The class 28 is closed both under
the operation of countable disjoint union and under the operation £.

The operation £ may remind the reader of the sets introduced in Section 3.4.2. For
each non-empty stump o, the set C, introduced in that section is obtained from the
sequence of sets Cpo,Cy1, ... by an operation similar to £.

A subset X of A is called a dense subset of A if and only if for each a there exist
o, m such that @m = a and « belongs to X. A subset of A is called a co-dense subset
of N if and only if N\ X is a dense subset of X.

3.6.2

Let Py, P1, Py, ... be asequence of co-dense subsets of N such that for each n, p there
exists m such that m > p and F,, does not reduce to P,.

We claim that the set D(A;, £ F,) does not reduce to the set £ P,. Let us prove
neN neN
this claim.

Suppose g is a function from N to A reducing D(Ay, £ P,) to £ P,. We make
neN neN
three observations and obtain a contradiction.

Observation (i): For all a, if o''® = 0, then (g]a)® = 0.

For suppose o' = 0 and (g|a)°#0. Let n be the least k such that (g|a)®(k) # 0. As
g is continuous there exists m such that for all 3, if and only if fm = @m, then n is
the least k such that (g|3)°(k) # 0.

We determine p > m such that P, does not reduce to F,.

We define a mapping h from A to A such that, for each 3, hi_ﬁm =a@m and p is the
least k such that (g|8)*°(k) # 0 and (h|3)}*T1 = 8 and (h|8)°#0.

Observe that for each 3, 3 belongs to P, if and only if h|3 belongs to D(A4:, £ F,)
neN

if and only if g|(h|3) belongs to gN P, if and only if (gi(hiﬁ))n+1 belongs to P,.
ne

So P reduces to P,,. Contradiction.
Clearly, for all a, if o' = 0, then also (g|a)® = 0 and our first observation is proved.

Observation (ii): There exists m such that for all «, if @n = 0m and a® = 0, then
(g]a@)® = 0. In order to see this, observe that the set {a|a® = 0} is a spread that
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contains 0 and is contained in D(4,, £ P,).
neN
Observe that for every a, if ® = 0, then « belongs to £ P, and apply the continuity
neN

principle. Either there exists m such that for all o, if @m = Om and o® = 0, then
(g9l)® = 0, (that is: the desired conclusion) or there exists m, such that for all a,
if @m = Om then (g]a)°#0. But the latter of these two alternatives contradicts

observation (i) as there exists « such that @m = 0m and o*° = 0.

Observation (iii): From observations (i), (i) it follows that D?(A;) reduces to A;:

let us prove this.

Let m be a number with the property mentioned in Observation (ii).

We first determine for each n a sequence 3,, such that 3,, does not belong to P, and

B,m = 0m. We then construct a mapping h from N to A such that, for each «,

(hla)® = Om % a®, (h|a)''® = Om x o' and for each n, (hla)t™ Tt = B,,. Observe that,

for each a, a belongs to D?(A;) if and only if h|a belongs to D(Ay, £ P,,) if and only
n

if g|(h|a) belongs to £ P, if and only if (gi(hkz))o = 0. So D?(A;) reduces to A;.
neN

But, as we know, D?(A;) does not reduce to A;. Contradiction.

3.6.3

Let X,Y be subsets of Baire space N'. We say that X strictly reduces to Y, notation:
X <Y, if and only if X reduces to ¥ but Y does not reduce to X.

Let Py, Pi, Ps,... be a sequence of subsets of A" such that, for all n, P, < D(A4y, P,)
and for all n there exists m > n such that P, < P,,, and for all n, p, there exists «
such that @p = Op and « does not belong to P,.

One may establish by a slight variation of the proof given in 3.6.1 that £ P, <
neN

D(A;, £ P,). This statement also follows from our more general Theorem 3.6.5.
neN

3.6.4

Let Py, Py,...,P,_1 be a finite sequence of subsets of NV.

We define subsets D(Pp, Pi,...,P,_1) and C(Py, Py, ..., P,_1) of N as follows. For
each «, a belongs to D(Fp, Py, ..., P,-1) if and only if there exists j < n such that

o/ belongs to P; and « belongs to C(Py, P1, ..., P,—1) if and only if for all j < n, o
belongs to P;.

If for all j < n, P = P; we write D"(P) for D(Fp, P, ...P,-1) and C™(P) for
C(Po,Pr,. ., Pu1).

3.6.5
Let Py, Pi, Ps,... be a sequence of co-dense subsets of A/ such that for each n, A;
reduces to P, and there exists m such that P,,, does not reduce to D(FPy, Py, ..., Pn-1).

Define Q := £ P,: we assert that Q is a co-dense subset of A" and that for all &, ¢,
neN
the set D(D* (A1), DY(Q)) reduces strictly to the set D(DF1(A4;), DYQ)).
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The proof of this assertion takes several steps. It is easy to see that A\(Q is dense
in NV and that D(D*(4,), D(Q)) reduces to D(D*1(4;), DY(Q)). We only have
to show that, conversely, D(D¥+1(4,), D*(Q)) does not reduce to D(D*(A;), DY(Q)).

3.6.5.1 To this end, we assume that g is a function from N to N reducing
D(D*1(A1), DY(Q)) to D(D* (A1), DY(Q)).
For every «, p we define a number ¢(a, p) as follows:

c(e,p) = #{jlj < fla’70p = Op}.

Observe that, for each a, p, £ > c¢(a,p) > c(a,p -+ 1).
We claim that for every j < £, for every «, if for every p, ¢(a, p) > j then for every p,
e(gla, p) > j. We prove this by induction.

3.6.5.2 We first prove: if for every p, co(p) > 0, then for every p, c(gla,p) > 0.
Suppose that we find some « such that for every p, ¢, (p) > 0, and that we also find
some r such that ¢(gla,r) = 0.

We calculate ng,n1,... ,n¢—1 such that for each j < £, n; is the least p such that
(gla)3°(p) # 0. We calculate m such that for every 3, if 3m = @m, then for each
j < £, n; is the least p such that (g]8)9°(p) # 0.

Observe that for each 3, if Bm = @m, then g|3 belongs to D(D*(4,), D*(Q)) if
and only if either (g|3)° belongs to D*(A4;) or, for some j < £, (g|3)}7"+! belongs
to P,. We now define a function h from N to N such that, for every 3, (h|3)° =
(g]8)° and for every j < £, (h|B)*! = (g|B)1¥mi+1. Observe that for all 3, if
Bm = @m, then (3 belongs to D(D*+1(4,),D%Q)) if and only if h|3 belongs to
D(D*Ay, Py, Poys-. ., Pn,_,). We determine N > m such that Py does not reduce
to D(D*(Ay), Pay, Pays ... s Py ).

We also determine a function f such that for every 3, f|#m = @am and for every 3,
/3 belongs to Py if and only if f|3 belongs to D(D¥+1(4,),DY(Q)).

(We obtain this function f as follows. As ¢, (m) > 0, we may assume that a!:.0.0m =
Om. We take care that for each 3, f|fm = @m, and N is the least p such that
(FI3)F0(p) # 0 and (f]8)% N+ = 3 and (f|3)° does not belong to D¥(A4;) and for
each j, if 0 < j < £, then (f|3)*/ does not belong to Q).

Observe that h o f reduces Py to D(D*(A1), Pry, Payse v s Pay_y)-

Contradiction.

We conclude that if for every p, e(a,p) > 0, then for every p, ¢(gla, p) > 0.

3.6.5.3 Assume now that for some j such that j + 1 < £ we have seen that for all «,
if for every p, c(a, p) > j, then for every p, ¢(gla) > j.

We want to show for all «, if for every p, c(a,p) > j+ 1, then for every p, ¢(gla, p) >
Jj+ 1

Suppose that we find some « such that for every p, ¢(a,p) > j + 1 and that we also
find some ¢ such that ¢(gla, q) < j.

We will obtain a contradiction.
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We calculate m such that for every 3, if Bm = @m, then ¢(g|3,q) = c(gla, q).

We consider the set B := {3|3m = @m and for every p, c(3,p) > j}.

Observe that B is a spread and that the induction hypothesis implies that for every
B in B, and every p > ¢, ¢(913,p) = ¢(9i8, ¢). Therefore for every 3 in B, there exists
i < £ such that (g|3)"*° = 0, and consequently, g|3 belongs to D(D*(A;), D*(Q))
and 73 itself belongs to D(D*+1(A;), DY(Q)).

So the spread B is a subset of the set D(D*+1 A, D*Q) and « belongs to B.

Using the continuity principle we find g,i such that either for every 3 if f¢ = @g and
for every p, ¢(83,p) > 7, then 3% = 0 or for every j3, if B¢ = @g and for every p,
c(B,p) > j, then B'* belongs to Q. The first alternative is obviously false; and the
second one is seen to be false by another application of the continuity principle, as
follows.

We determine 7, n such that either for every 3, if Br = @r and for every p, ¢(3,p) > j,
then g% = 0, or for every 3, if Br = @r and for every p, c(3,p) > j then B54%(n) £ 0
and B4%"+1 belongs to P,.

The first of these two sub-alternatives is false as ¢(a,r) > j + 1 so we may choose 3
such that 1*#0, Br = @r and for every p, ¢(3,p) > j. The second one is also false,
as N\ P, is dense in NV. Contradiction.

Clearly, for all «, if for every p, ¢(a,p) > j + 1, then for every p, ¢(gla, p) > j + 1.

3.6.5.4 We conclude that for every j < £, for every a, if for every p, ¢(a,p) > j, then
for every p, c(glap) > J. (+)
We now consider, for each i < k + 1, the set B; = {a®® = 0}. Observe that each
set B; is a spread contained in D(D*+1 A4, D‘Q) and that the sequence 0 belongs to
every B;.

We observe that for each i < k + 1, for each 3 in B, g|3 belongs to D(D*A;, D*Q)
and apply the continuity principle. For each i < k+ 1 we may determine n;, p;, q;, m;
such that either (i) for each 3 in By, if n; = Ony, then (g|3)%?: = 0 or (ii) for each
B in By, if An; = Ony, then (g|B3)1%° = 0 or (iii) for each 3 in B;, if An; = Ony,
then (g|3)%%:°(m;) # 0 and (g|B8)"% ™! belongs to P,,,. The alternative (iii) is
excluded by the conclusion formulated in the first sentence of this Section, as for
every p, ¢(0,p) = .

We also consider, for each j < £, the set C; = {a|a!¥? = 0}. Again, each set C; is
a spread contained in D (D*+1(A4;), DY(Q)) and the sequence 0 is a member of each
C;.

Using the continuity principle and reasoning as above we may determine, for each
j < £, numbers pj,r;,s; such that either (i) for each 3 in Cj, if Bp; = 08;, then
(913)%7i = 0 or (ii) for each B in Cy,if Bp; = Opj, then (g|B)1%° = 0.

We now may reduce D*HH1(4;) to D¥¢(A;). We first build a function h from N
to N as follows. Let N be the greatest of the numbers ng,ni1,... , 7%, Po, ... ,Pr1.
For each « in NV, for each i < k + 1, we define (h|a)?* := ON x o' and for each j < £,
we define (h|a)t0 ;= ON * o¥+7,

Furthermore, we define h|a in such a way that for each j < ¢, for each n, (h]a)bdm+!
does not belong to P,.

Observe that for every a, a belongs to D*¥+1(A;) if and only if hla belongs to
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D(D*1(A;), DY(Q)) if and only if there exists ¢ < k such that (g o hla)®* = 0
or there exists j < £ such that (g o hla)"? = 0, that is, D¥+1(A4;) reduces to
DE+E (4y).

But, as we saw in Section 3.2.4, DFT+1 4, does not reduce to D¥Tt 4, . Contradiction.
This concludes the proof of the assertion in Section 3.6.5.

3.6.6

The following remark is a consequence of the result of section 3.6.5.

Let Py, Py, P»,. .. be asequence of co-dense subsets of A and assume that for each n
there exists m such that the set P,, does not reduce to the set D(FPs, Py,..., FPp-1).

Let Q := &£ P,. Then, for all £, DYQ) < D" (Q), that is, D*(Q) reduces to

€N
D1(Q), but D(Q) does not reduce to D(Q).
(Observe that A; reduces to . So according to 3.6.5, for each £, D‘Q < D(A;, D'Q) <
D€+1Q).

3.6.7

It will be clear that the result 3.6.6 may be applied repeatedly. Starting from the
sequence Ay < D?(A;) < D*(A1),... we first form Qp := £ D™"(A;) and observe
neN

Qo < D*(Qo) < D?*(Qy),..., we then form @y := néN D"™(Qp) and observe Q1 <

D%*(Qq) < .... We now define a sequence Qo,Q1,... of subsets of AV, as follows: for
each m, Qup1:= £ D™(Qs,). Then we “diagonalize” and form @, := EN Q. We
neN me

can go further and further but we never leave the class X9 of countable unions of
closed sets.

We now want to prove a counterpart to Corollary 3.6.6. Let X be a subset of . X is
inhabited if and only if there exists « such that « belongs to X and X is co-inhabited
if and only if there exists a such that « does not belong to X.

3.6.8
Let Py, Py, Ps,... be a sequence of inhabited subsets of N and assume that for each
n there exists m such that P,, does not reduce to C(Py, Py,... ,P,1).

Let Q ;= £ P,. We assert that  is an inhabited subset of A, and that for all
neN

£, CHQ) < C(Q), that is, the set C*(Q) reduces to the set C*1(Q) but the set
C*1(Q) does not reduce to the set C4(Q).

The proof of this assertion takes several steps.

Let Py, Py, Ps,... be a sequence of subsets of N satisfying the conditions of the the-

orem. Define Q := £ P,
neN




















































































